itertree Documentation
Release 0.8.2

B.R.

Jun 09, 2022

1 Changelog

2 Tutorial

3 itertree package

4 itertree examples package

5 Comparison

6 Background information about itertree
7 itertree - Introduction

Python Module Index

Index

CONTENTS

35
75
85
91
95
101

103

itertree Documentation, Release 0.8.2

e Introduction - Short introduction to the itertree package

* Tutorial - A tutorial with examples and an ordered reference of the main functions of itertree
* API Reference - API Description of all containing classes and methods of itertree

» Usage Examples - itertree usage examples

e Comparison - Compare itertree with other packages

* Background information - Some background information about itertree and the target of the development

CONTENTS 1

itertree Documentation, Release 0.8.2

2 CONTENTS

CHAPTER
ONE

CHANGELOG

1.1 Version 0.8.2

We reworked the itertree data module so that iData class behaves much better like a dict. All overloaded methods are
improved to match the dict interface. Also iTDataModel is changed and is now a class that must be overloaded.

The value validator() raises now an iTDataValueError or iTDataTypeError exception directly. This behavior match
from our point of view much better to the normal Python behavior compaired with the old style were we delivered a
tuple containing the error information.

->Please consider this interface change in your code.
Second we focused for this release on the extension of functionalities related to linked iTrees:

* create internal links (reference to another tree part of the current tree)

* localize and cover of linked elements

 an example file related to the usage of links is available now
Beside this we started to extend the unit testing for the package and we fixed a lot of smaller bugs.
Because of some internal simplifications in i7ree class the overall performance is again improved a bit.
The documentation was reviewed and improved.

No new features are planned at the moment and we just wait to complete the unit test suite, before we will do an official
1.0.0 release.

Still Beta SW -> but release candidate!

1.2 Version 0.7.3

Bugfixes in repr() and render()
Extended examples

Still Beta SW -> but release candidate!

itertree Documentation, Release 0.8.2

1.3 Version 0.7.2

Improved Interval class (dynamic limits in all levels)
Adapted some tests and the documentation

Still Beta SW -> but release candidate!

1.4 Version 0.7.1

Bigger bugfix on 0.7.0 which was really not well tested!

Still Beta SW -> but release candidate!

1.5 Version 0.7.0

Recursive functions are rewritten to use an iterative approach (recursion limit exception should be avoided)
Access to the deeper structures improved (find_all, new get_deep() and max_depth_down() method.

New iTree classes for Linked, Temporary or ReadOnly items

performance improved again

Examples regarding data models added

Still Beta SW -> but release candidate!

1.6 Version 0.6.0

Improved interface and performance
Documentation is setup

Testing is improved

Examples still missing

Beta SW!

1.7 Version 0.5.0

First released version

Contains just the base functionalities of itertree. Interface is is finished by 80%
Documentation and examples are missing

testing is not finished yet.

Beta SW!

4 Chapter 1. Changelog

CHAPTER
TWO

TUTORIAL

2.1 Status and compatibility information

The original implementation is done in python 3.5 and it is tested under python 3.5 and 3.9. It should work in all python
3 environments.

The actual development status is released.

2.2 Using the itertree package

To understand the full functionality of itertree the user should have a look on the related examples which can be found
in the example folder of itertree.

In this chapter we try to dive in the functions of itertree in a clear structured way. The user might look in the class
description of the modules too. But the huge number of methods in the iTree class might be very confusing. And we
hope this chapter orders the things in a much better way.

2.3 Construction of an itertree

The first step in the construction of a itertree is to instance the itertree “iTree class’.

class itertree.iTree(tag, data=None, subtree=None)

This is the main class related to iTrees.

This object is the parent of a sub-tree (children, sub-children, etc.). The iTree object itself can also be a child of
a parent iTree object. If this is not the case the iTree object is the root of the tree.

A iTree object can only be integrated in one tree (one parent only)!

Each iTree object contains a tag. In case your tags are stings it’s recommended to use tag strings without wildcards
“¥» 7 and without the standard separators “/” and “#”. If you use these characters you might get confusing
results in find, filter and match operations.

In general we allow all hashable objects to be used as a tag in the iTree objects (only search operation might be
limited in this case). But we have two exceptions: We do not allow integers and Tagldx objects as tags because
those objects used for direct item access.

Different than in dictionaries it is allowed to put multiple times the same tag inside the iTree. The items with the
same tag are placed and ordered (enumerated) in the related tag-family. They can be reached via Tagldx objects
by giving the tag, index pair (tag_idx).

itertree Documentation, Release 0.8.2

Linked iTree objects will behave different. They have a read only structure (children) and they contain the children
(tree) of the linked iTree. The “local” attributes like tag, data, ... can be set independent from the linked item
(local properties). To change the tree structure of such an object you must manipulated the source object and
reload the link.

Additionally a iTree object can contain:
e data - a iTData object to store any kind of python objects
* couple - you can couple the object to another one by giving a pointer

* is_temporary - you can mark it as temporary. Those iTree items behave like normal ones. But they will not
be considered during encoding for storage, etc.

There are different ways to access the children and sub-children in the tree of a iTree object.
The standard access for single items is via itree_obj[] (__getitem__()) call.

More complex access is available via find() and findall() methods. Have a look in the documentation related to
each method.

The delivery of access related operations in the iTree objects is for unique targets an iTree object and for multi
target operations an iterator over the matching items. We don’t deliver something like a list.

If really needed an iterator can be easily converted into a list by list() method but this may take a long time for
huge iterators. The iterator should only be used in the final step of the operation. It’s recommended to have a
look into itertools for better usage of the delivered iterators.

The design of the object is made to have best possible performance even that it is pure python. For more details
you may run the performance tests in the test section (But you might have to install additional packages run the
comparisons and to get the full picture.)

The function related to iterations iter; iter_children and find_all can be used with an item_filter. By this mecha-
nism you can create queries regarding any property in an iTree.

To initialize the class the following parameters are available
Parameters
* tag - tag string or hashable object used for the iTree identification
» data — data dict or item to be stored in the node

» subtree — The subtree is a iterable structure that contains sub-items (iTree objects) that
should be the children of this iTree.

Warning: subtree: In case the given iTree objects have already a parent an implicit copy
will be made.

__init__(tag, data=None, subtree=None)

Instance the iTree object:

>>> iteml=iTree('iteml') # itertree item with the tag 'iteml’

>>> item2=iTree('item2', data={'mykey':1}) # instance a iTree-object with data content.
— (defined as a dict)

>>> item3=iTreeTemporary('temp_item') # instance a temporary iTree-object

>>> # instance a iTree-object containing a link:

>>> item4=iTreeLink('linked_item', data={'mykey':2}, link_file_path='dt.itz', link_key_
—path=iTreeTagldx('child',0), load_links=True)

6 Chapter 2. Tutorial

itertree Documentation, Release 0.8.2

iTreeTemporary objects can be filtered out and when dumping the whole iTree into a file the iTreeTemporary items are
ignored and not stored.

In case a link is set by using the iTreeLink class will integrate the childs of the linked iTree-objects as it’s own childs
into the tree. The iTree object can have own properties like temporary or own data. But it can also contain own, local
children (see iTree linked sub-trees).

To add or manipulate the children of an item we have several possibilities. The following direct operations are recom-
mended for structural manipulations in the tree:

>>> root=iTree('root"')

>>> root.append(iTree('child')) # append a child

>>> root[0]=iTree('newchild') # replace the child with index 0

>>> del root[iTreeTagIldx('newchild',0)] # deletes the child with matching iTreeTagIdx

Additionally a huge set of methods is available for structural manipulations related to the children of a item.

itertree.iTree.append(self, item)
Append the given iTree object to the tree (new last child)

Except
raise TypeError in case iTree object has already a parent

Parameters
item - iTree object to be appended

Returns
True in case append was successful

itertree.iTree.__iadd__(self, other)

Implement self+=value.

itertree.iTree.appendleft (self, item)
Append the given iTree object to the left of the the tree (new first child)

Except
raise TypeError in case iTree object has already a parent

Parameters
item — iTree object to be appended

itertree.itree_main.iTree.extend(self, extend_items)

We extend the iTree with given items (multi append)

Note: In case the extend items have already a parent an implicit copy will be made. We do this because we
might get an iTree-object as extend_items parameter and then the children will have automatically a parent even
that the parent object might be a temporary one.

Parameters
extend_items - iterable object that contains iTree objects as items

Returns

True

itertree.itree_main.iTree.extendleft (self, extend_items)

We extend the iTree with given items in the beginning (multi appendleft)

2.3. Construction of an itertree 7

itertree Documentation, Release 0.8.2

Note: In case the extend items have already a parent an implicit copy will be made. We do this because we
might get an iTree-object as extend_items parameter and then the children will have automatically a parent even
that the parent object might be a temporary one.

Note: The extendleft() operation is a lot slower then the normal extend operation

Parameters
extend_items - iterable object that contains iTree objects as items

itertree.itree_main.iTree.insert(self, insert_key, item)
Insert an item before a specific position

Parameters
» insert_key — position key (integer index or Tagldx)
e item — item that should be inserted in the tree (new child)

itertree.itree_main.iTree.move(self, insert_key)
move the item in another position

Parameters
insert_key — item will be insert before this key

itertree.itree_main.iTree.rename (self, new_tag)
give the item a new tag

Parameters
new_tag — new tag object string or hashable object

itertree.itree_main.iTree.pop(self, key=- 1)
pop the item out of the tree, if no key is given the last item will be popped out

Parameters
key — specific identification key for an item (integer index, Tagldx)

Returns
popped out item (parent will be set to None)

itertree.itree_main.iTree.popleft (self)
pop the first item out of the tree

Returns
popped out item (parent will be set to None)

itertree.iTree.clear(self)
deletes all children and data! All flags stay unchanged!

The addition of iTrees is possible the result contains always the properties of the first added item and the children of
the second added item are appended by creating a copy.

>>> a=iTree('a',data={'mykey':1},subtree=[iTree('al'),iTree('a2')])
>>> b=iTree('b',subtree=[iTree('b1'),iTree('b2')])

>>> c=a+b

>>> C

iTree("'a'", data="{'mykey': 1}", subtree=[iTree("'al'"), iTree("'a2'"), iTree("'b1'"),.
—1Tree(" "2 ") 1) (continues on next page)

8 Chapter 2. Tutorial

itertree Documentation, Release 0.8.2

(continued from previous page)

|

Multiplication of a iTree is possible too the result is a list of iTree copies of the original one.

>>> itree_list=iTree('a')*1000 # creates a list of 1000 copies of the original iTree
>>> root=iTree('root"')

>>> root.extend(itree_list) # we can extend an existing 'iTree with the list (add 1000
—identical children)

True

2.4 item access

The items in the iTree can be accessed via __getitem__() method:

itertree.iTree.__getitem__Q)

Main getter for items

If given key targets to only one item we will deliver an iTree. If no matching item is found an IndexError or
KeyError exception will be raised.

If the given key targets to multiple items (tag family, slice, iterable of single target keys) and iterator will be
delivered.

Parameters
key — single target: index, Tagldx or tuple (tag, index) (not recommended) multi target:
Tagldx_s; iMatch; slice or an iterable (like list) of these keys

Returns
iTree item or iterator (multi target)

>>> root=iTree('root')

>>> root+=iTree('child',data=0)

>>> root+=iTree('child',data=1)

>>> root+=iTree('child',data=2)

>>> root+=iTree('child',data=3)

>>> root+=iTree('child',data=4)

>>> root[1] # index access

iTree("'child'", data=1)

>>> root[Tagldx('child',1)] # TagIdx access (index targets the index in the tag.
—family!)

iTree("'child'", data=1)

>>> root[TagIldx('child',-1)] # Tagldx access with negative index
iTree("'child'", data=4)

>>> root[TagIldx('child',[0,2])] # TagIdx give index list -> result is an iterator!
<list_iterator object at 0x0000029E12F69B0OO>

>>> list(root[TagIdx('child',[0,2])]) # make ietartor content visible by casting.
—into a list

[iTree("'child'", data=0), iTree("'child'", data=2)]

>>> list(root[[0,2]]) # index list access (absolute indexes)

[iTree("'child'", data=0), iTree("'child'", data=2)]

>>> list(root[1:3]) # slices are allowed too

[iTree("'child'", data=1), iTree("'child'", data=2)]

24,

item access 9

itertree Documentation, Release 0.8.2

The Tagldx class is used to address items that contains the same tag. The second argument of the Tagldx is the index
that the item has in the related tag-family. But we can also give multiple indexes or a slice. As the given example shows
is the result of not unique targets always an iterator object.

itertree.iTree.get_deep()

deep key access the function is a replacement for selffkey_list/0]][key_list[1]]... [key_list[-1]] but you can also
feed with an iterator

dives into the tree key_list=[1,0,2] -> second element level 1 -> first element level 2 -> third element level 3 ->
same as self[1][0][2]

Note: Each key in the key list must target to a single item only! E.g. do not use tags here they deliver always
a family iterator not a single item (the method will raise an exception). Use index integers or Tagldx objects
instead

Parameters
key_list —list or iterator of keys (indexes, Tagldx, tuple(tag,index) -> only in case no tuple tags!

Returns
iTree object the key list targets

itertree.iTree.find()

The find function targets over multiple levels of the iTree, it returns single items only! This means in case the
key_path targets to multiple items the default_return will be given. If the key_path targets to a family with only
one item inside or the item_filter extracts only one item in a family the item will be given back as result. For
multiple result utilize the find_all() method (which is slower).

Note: The method will deliver a default_return when ever in the whole key_path a match is not unique. This
means iteration is stopped here and even that a deeper iteration with the defined filtering might deliver at least a
unique result. To ensure to find this deeper results you must utilize the slower find_all() method.

The key_path parameter given is normally a list. This can be a list of keys or Tagldx objects. The function will
search for the first item in the first level, fo next item in the next level and so on. ..

Absolut and relative key_paths:

If the first item is the separator (default: °/’) the find search is like an absolute path and we start at the root of the
iTree. For compatibility reasons with find_all we accept a leading “./” (or to be exact: “.%s”#str_path_separator)
as absolute path indicator. If the first item is different, the key_path is relative and we start from the actual item
and search the children and sub-children.

Single string key_path: If the user searches for string type tags he can use a string with a separator (default: */*)
in between the tags (Those key_paths will be implicit translated in a list). An index separator (default = ‘#’) in
between the tag and the index can also be used in this case. If the argument is already a list the single keys will
not be parsed regarding the str_path_separator.

Note: If iTree contains tags with characters that used for separators or the all match ‘*’ character the find() result
might contain that tagged item instead of the expected separated or wildcard match.

Note: Quickest find operations can be performed by giving a list containing index integers or Tagldx objects

The parameters in detail:

10

Chapter 2. Tutorial

itertree Documentation, Release 0.8.2

Parameters

» key_path — single key or list of keys identification path for the item/items to be searched.
Possible keys: integer - behaves like normal __getitem__ () -> itree_item[key] Tagldx- be-
haves like normal __getitem__ () -> itree_item[key] iTreeTagSlice - select a tag sliced group
of sub-elements iTMatch - search pattern can be used too, but keep in mind it must deliver
a unique result! Slice - a slice of indexes (like a special index list) string - will be parsed by
the separators, special string “*” is as interpreted as any match iterable list/tuple/deque,... -

run over single items

o item_filter —filters the item content regarding NORMAL, TEMPORARY and LINKED
flag or a given filtering method

* default_return - object will be return in case of no match (default = None)

» str_path_separator — separator character in case of strings for the search levels (default:
Py

» str_index_separator — separator character for given tag indexes (default: “#”)

Returns
iTree single item

2.5 iTree other structure related commands

itertree.iTree.__setitem__()

put the item in the iTree for (re)setting a child

HINT: A iTree child can only be child of one iTree (one parent only) HINT2: Linked items cannot be changed
change the linked item and reload the tree!

Parameters
* key — single identifier for the item can be integer index or Tagldx
» value - iTree object that should be child of called iTree

Returns
value
itertree.iTree.__delitem__Q)
delete an item in the tree
Parameters
key — key targeting the item to be deleted single target: iTree object (remove), index, Tagldx or

tuple (tag, index) (not recommended) multi target: Tagldx_s or an iterable (like list) of these keys
or a slice

Returns
deleted item

itertree.iTree.clear()

deletes all children and data! All flags stay unchanged!

itertree.iTree.copy()

create a copy of this item

The difference in between copy and deepcopy for iTree is just that we do in deepcopy a copy of all data items
too. In copy we just copy the iTData object not the items itself, they stay as pointers to the original objects.

2.5. iTree other structure related commands 11

itertree Documentation, Release 0.8.2

The function is used internally in extend operations too. And we can see (profiler) that improvements in this
method might have big impact.

Returns
copied iTree object

itertree.iTree.reverse()

reverse the order of all children in the iTree object

itertree.iTree.rotate()

rotate children of the iTree object n times (rotate 1 times means move last element to first position)

Parameters
n —

2.6 iTree compare items

itertree.iTree.__eq__QO

A iTree object is always unique we test therefore just for matching object IDs This is needed for quick index
findings! ..node:: To check if properties content is equal use equal() instead :param other: iTree object to compare
with :return:

itertree.iTree.equal ()

compares if the data content of another item matches with this item
Parameters
» other — other iTree
» check_parent — check if item has same parent object too? (Default False)
* check_coupled — check the couple object too? (Default False)

Returns
boolean match result (True match/False no match)

Because the __eq__ () method (== operator) is internally used for same item object findings. We compare here based
on the python object id. Therefore for the comparison of two non possibly not identical objects the equal() method
should be used.

itertree.iTree.__contains__Q)
checks if an iTree object is part of the iTree :param item: iTree object we searching for :return:

itertree.iTree.__hash__Q)

The hash operation is available but not a quick operation! ..node::: We do here not consider, parent and coupled
item :return: integer hash

itertree.iTree.__len__Q)
Return len(self).
Based on the iTree length the comparison operators <; <=; >; >= are available too.

itertree.iTree.count()
count the number of children that match to the given filter :: note: The operation is not very quick on huge iTrees
and complicate filters!

Parameters
item_filter —

12 Chapter 2. Tutorial

itertree Documentation, Release 0.8.2

Returns
integer number of children matching to the filter

2.7 iTree properties

As we will see later on some properties of the iTree object can be modified by the related methods. Warning:: The user
should NEVER modify any of the given properties directly. Especially the not discussed private properties (marked
with the beginning underline). Direct modifications will normally lead into inconsistencies of the iTree object!

The iTree object contains the following general properties:

itertree.iTree.root()

property delivers the root item of the tree

Returns
iTree root item

itertree.iTree.is_root()

is this item a root item (has no parent)

Returns
True/False

itertree.iTree.parent()
property contains the parent item

Returns
iTree parent object (or None in case no parent exists)

itertree.iTree.pre_item()

delivers the pre item (predecessor) of this object

Returns
iTree predecessor or None (no match)

itertree.iTree.post_item()
delivers the post item (successor)

Returns
iTree successor or None (no match)

itertree.iTree.depth_up()
delivers the distance (number of levels) to the root element of the tree
Returns
integer
itertree.iTree.max_depth_down()

delivers the max_depth in the direction of the children

Returns
integer maximal children depth

itertree.iTree.is_temporary()

In contrast to iTreeTemporary class this is False

Returns
False

2.7. iTree properties 13

itertree Documentation, Release 0.8.2

itertree.iTree.is_read_only()

In contrast to iTreeReadOnly class this is False

Returns
False

itertree.iTree.is_linked()

In contrast to iTreeLinked class this is False

Returns
False

Item identification properties:

itertree.iTree.idx()

Index of this object in the iTree

Returns
integer index

itertree.iTree.tag_idx()

Get the Tagldx object related to this object (contains the tag and the index of the object in the tag-family)

Returns
Tagldx

itertree.iTree.idx_path()

delivers the a list of indexes from the root to this item

Returns
list of index integers (here we do not deliver an iterator)

itertree.iTree.tag_idx_path(Q)

delivers the a list of Tagldx objects from the root to this item

Returns
list of Tagldx (here we do not deliver an iterator)

>>> root=iTree('root"')
>>> root+=iTree('child',data=0)
>>> root+=iTree((1,2),data="tuple_child0")
>>> root+=iTree('child',data=1)
>>> root+=iTree('child',data=2)
>>> root+=iTree((1,2),data="tuple_childl")
>>> root[0]+=iTree('subchild")
>>> root.render()
iTree('root')

L —iTree('child', data=0)

L —iTree('subchild")

L—iTree((1, 2), data="tuple_child0®"')

L —iTree('child', data=1)

L —iTree('child', data=2)

L _iTree((1, 2), data="tuple_childl")
>>> root[0][0].root
iTree("'root'", subtree=[iTree("'child'", data=0, subtree=[iTree("'subchild'")]),.
—~iTree("(1, 2)", data="tuple_child®'), iTree("'child'", data=1), iTree("'child'",.
—data=2), iTree("(1, 2)", data="tuple_childl')])
>>> root[0][0].idx

(continues on next page)

14

Chapter 2. Tutorial

itertree Documentation, Release 0.8.2

(continued from previous page)

0

>>> root[0][0].tag_idx
TagIdx('subchild', 0)

>>> root[0][0].idx_path

[0, 0]

>>> root[0][0].tag_idx_path
[TagIdx('child', ®), TagIdx('subchild', 0)]
>>> root[1].tag_idx
TagIdx((1, 2), 0)

>>> root[-1].tag_idx
TagIdx((1, 2), 1)

As shown in the last example hashable objects can be used as tags for the itertree items to be stored in the iTree object.
Even for those kind of tag objects it is possible to store multiple items with the same tag. In the example the enumeration
inside the tag family can be seen in the index enumeration in the Tagldx object.

Beside those structural properties the i7ree objects contains some more properties that might be modified by the related
methods.

itertree.iTree.coupled_object()

The iTree object can be couple with another python object. The pointer to the object is stored and can be reached
via this property. (E.g. this can be helpful when connecting the iTree with a visual element (tree-list item) in a
GUI)

Returns
pointer to coupled object

itertree.iTree.set_coupled_object()

User can couple this object with others with the help of this attribute .. note:: E.g. this might be an object in a
GUI that are related to this item

Parameters
couple_object — object pointer to the object that should be coupled with this iTree item

Different than the data the coupled_obj is just a pointer to another python object. E.g. by this you might couple the
iTree to a graphical user interface object e.g. an item in a hypertreelist or it can be used to couple the iTree object to
an item in a mapping dictionary. The property couple_obj is not managed by the iTree object it’s just a place to store a
pointer. In file exports or string exports this information will not be considered.

2.8 iTree data related methods

itertree.iTree.data()

delivers the data-attribute object of the item

Returns
data object of the item

This is the data property. The property contains the iData objects which behaves in general like a dict. But there are
two excepetions that must be considered: * The (_ NOKEY__) key is an implizit key that will be used in case the user
gives only one value (no_key) to the d_set() method. Then the given parameter will be stored in the (__ NOKEY_)
item of the dict. * In case a dict item contains a iDataModel object the given value in iTree.d_set() will be checked
against the data model.

To manipulate data you can use the functions of the iTree.data object or can use the quick access functions in i7ree
object (methods related to data access have all the prefix d_):

2.8. iTree data related methods 15

itertree Documentation, Release 0.8.2

itertree.iTree.d_get(self, key=('__iTree_NOKEY.

get function for a data attribute

"), return_type=0)

In case the standard iTData object is used we have:

Parameters
key — key under which the data is stored, in case no key is given the “_ NOKEY__” item will
be returned

Returns
data attribute object

itertree.Data.iTData.__getitem__()
get a specific data item by key

Except
Will raise KeyError in case given key is unknown

Parameters
* key — key of the data item (if not given __NOKEY__ is used!

* _return_type — We can deliver different returns * VALUE - value object * FULL - iTree-
DataModel (only if used else same as VALUE) * STR - formatted string representation of
the data value

..note :: The parameter is only used by the helper method getitem()
and cannot be used by standard item access

Returns
requested value

itertree.iTree.d_set(self, *args, **kwargs)

set function for a data-attribute
In case the standard iTData object is used we have:
Parameters

* key — give key under which the data will be stored, in case data is None the first key parameter
is taken as data object and it is stored in the “__NOKEY__” item

* value - data value the object that should be stored in the data structure of this iTree

Returns
None

itertree.Data.iTData.__setitem__(Q)

setter for the iTreeData object HINT: If no value is given the key item will be interpreted as value

and it will be stored as _ NOKEY__-object.

Parameters
* key — key under which the given object is stored
* value - object that should be stored

Returns
None

16 Chapter 2. Tutorial

itertree Documentation, Release 0.8.2

itertree.iTree.d_del (self, *args, **kwargs)
data related del (will delete the given key)

Returns
deleted value

itertree.Data.iTData.__delitem__(Q)
delete a item by key

Except
KeyError is raised in case item key is unknown

Parameters
* key — key of the data item (if not given __NOKEY__ is used!

» _value_only - Internal parameter cannot be reached by standard access * True - (default)
in case of iDataModel items we delete only the internal value

not the model itself
— False - we delete the value independent from the type
Returns

deleted value

itertree.iTree.d_pop(self, *args, **kwargs)
data related pop (will delete the given key from data-attribute)

Returns
deleted value

itertree.Data.iTData.pop()
delete a stored value

Except
will case KeyError if key is not found and default is not set

Parameters
* key — key where the item should be popped out

* value_only — True - only value will be deleted model will be kept in iTreeData False -
whole model will be popped out

Default
define the value given back in case key is not found else KeyError will be raised

Returns
deleted item or default

itertree.iTree.d_update(self, *args, **kwargs)

update function data-attribute
In case the standard iTData object is used we have:
Parameters

* key —give key under which the data will be stored, in case data is None the first key parameter
is taken as data object and it is stored in the “__NOKEY__” item

* value - data value the object that should be stored in the data structure of this iTree

2.8. iTree data related methods

17

itertree Documentation, Release 0.8.2

Returns
None

itertree.Data.iTData.update()

function update of multiple items if one item is invalid the whole update will be skipped and an iDataValueError
exception will thrown!

In case the replace_model flag is set the model will be exchanged.
Parameters taken from builtin dict:

Update D from dict/iterable E and F. If E is present and has a .keys() method, then does: If E is present and lacks
a .keys() method, then does: In either case, this is followed by:

Except
raises iDataValueError exception if a value in the given object is not matching to the data-model.
The iData object will not be updated in this case.

Parameters
« E—
— with .keys() method: for k in E: D[k] = E[k]
— without .keys() method: for k, v in E: D[k] = v
e **F _ we run: for k in F: D[k] = F[k]
e replace_models —
— True - Will replace the whole key related value (also iTDataModels are replaced)

— False (default) - All values are replaced in case of iTDataModel object the internal

value will
be replaced

Do not replace the iTree.data object with another object (iTree.data is just a property which is linking into the internal
structure). You will destroy a part of the functionality, use iTree.data.clear() and iTree.data.update() instead.

2.9 iTree iterators and queries

The standard iterator for iTrees delivers all children of the opbject. Beside this we have some special iterators that
contain specific filter possibilities.
itertree.iTree.__iter__Q)
standard iterator over all items in the iTree :param item_filter: ALL = default :return:
itertree.iTree.iter_children()
main iterator in children level
Parameters

item_filter - the items can be filtered by giving a filter constants or giving a filter method or
iTFilter object

Returns
iterator

itertree.iTree.iter_all()

main iterator for whole tree runs in top-> down order e.g.

18 Chapter 2. Tutorial

itertree Documentation, Release 0.8.2

iTree('child')

L _iTree('sub®")
L—iTree('sub®_0"
L—iTree('sub®_1"
L iTree('sub®_2'
L iTree('sub®_3'

L _iTree('subl")
L—iTree('subl_0")

)
)
)
)

will be iterated like:

iTree('child")
iTree('sub0')
iTree('sub®_0")
iTree('sub®_1")
iTree('sub0®_2")
iTree('sub®_3")
iTree('subl')
iTree('subl_0")

Parameters

» item_filter —filter for filter the items you can give a filter constant or a method for filtering
(should return True/False)

e filter_or -

— True - we combine the filtering with or this means even if we have no match in the higher
levels of the tree we will go deeper to find matches

— False - filters are combined with and which means children will only be parsed in case the
parent matches also to the filter condition

Returns
iterator

itertree.iTree.iter_all_bottom_up()

main iterator for whole tree runs in down-> top order (We start at the children and afterwards the parents: e.g.:

iTree('child')

L _iTree('sub®")
L _iTree('sub®_0"')
L—iTree('sub®_1")
L _iTree('sub®_2")
L _iTree('sub®_3")

L _iTree('subl")
L _iTree('subl_0"')

Will be iterated:

iTree('sub®_0")
iTree('sub®_1")
iTree('sub®_2")
iTree('sub®_3")
iTree('sub0®")

(continues on next page)

2.9. iTree iterators and queries 19

itertree Documentation, Release 0.8.2

(continued from previous page)

iTree('subl_0")
iTree('subl')
iTree('child")

Parameters

o item_filter — filter method for filtering (should return True/False when fet with an item)
or iTFilter object

e filter_or -

— True - we combine the filtering with or this means even if we have no match in the higher
levels of the tree we will go deeper to find matches

— False - filters are combined with and which means children will only be parsed in case the
parent matches also to the filter condition

Returns
iterator

itertree.iTree.iter_tag_idxs()
iter over all children and deliver the children Tagldx

Parameters
item_filter - the items can be filtered by giving a filter constants or giving a filter method or
iTFilter object

Returns
iterator over the Tagldx of the children

itertree.iTree.index()

The index method allows to search for the index of the item in a parent object This is especially useful if you
must use a item_filter. The delivered index is delivered relative to the given item filter!

For the item index of the item in the unfiltered tree (ALL) it’s recommended to use the idx property instead:
(parent.index(item,ALL) == item.idx)

Parameters
» item - item index should be delivered for
» item_filter - filter integer; method can not handle filter methods yet!

Returns
index integer of the item relative to the given filter

Beside the classical iterators we have the more query related find methods:

itertree.iTree.find_all()
The find all function works on all levels of the tree. The key_path given (e.g. a list of indexes) addresses the
items into the depth first item first level, second item second level.....

The method returns always an iterator or in case of no match an empty list! If you target to unique objects you
will get anyway an iterator containing this unique element.

Warning: It’s possible to create invalid recursions when constructing the key_path. In these cases the
recursion depth exceeded exception will be raised by the interpreter

20 Chapter 2. Tutorial

itertree Documentation, Release 0.8.2

In case the target in the upper keys is not unique, all matches will be delivered! e.g. The operation

my_tree.find_all([‘child’,’sub_child’]) takes first all items in the “child” family:

Tagldx(‘child’,0), Tagldx(‘child’,1),... Tagldx(‘child’,n) in an iterator and in the next step the function
will go one level deeper and will cumulate all the ‘sub_child’ families in these items as the result:

This means we have something like this:

my_tree[Tagldx(‘child’,0)][Tagldx(‘sub_child’,0)],my_tree[Tagldx(‘child’,0)][Tagldx(‘sub_child’1)],. ..
my_tree[Tagldx(‘child’,1)][Tagldx(‘sub_child’,0)],my_tree[Tagldx(‘child’,0)][Tagldx(‘sub_child’1)],. ..

and in case of no match in the keys items are skipped.

Note: It’s not at all the same as: my_tree[‘child’][‘sub_child’] -> this operation will raise an excep-
tion!

i

i

Note: When addressing a single item it’s quicker (~10x faster depending on tree depth) to use the get_deep()

method instead of the find_all() method.

The key_path parameter is very flexible in case of the objects you put in. We have several possibilities:
0. Special keys: We have the following special keys that might be used in the key_path:

* “/” default path separator (might be changed by str_path_separator parameter) If this is the
first key the find_all() search will be started in the root element not in the element the method
is called.

Note: Be careful with “//” or “/” placed not in the beginning of the path this will rollback the
find_all() to the root which means anything in the key_path before this key will be ignored.

o “*”_wildcard will iterate over all children of the item

o “*¥”_wildcard will iterate over all items of the item. The item itself is the first element of the
iterator delivered

Note: find_all(‘**’) creates an different iterator then iter_all() list(my_tree.find_all(‘**’)) =
[my_tree] + list(my_tree.iter_all())

Warning: It’s always recommended to avoid the usage of string tags containing functional
characters like “*#77%> /> »#” 7 E.g. In case the iTree contains a family with the tag “/”
or “*” or “**” the related family will be delivered. The special functionality is blocked in this
moment (for “/” you might use the str_path_separator parameter to keep the functionality).
Also filtering via iTMatch objects is limited in this case.

1. Give normal keys like in __getitem__() method: normal keys can be:
* index integers
* tag strings

* Tagldx,TagldxStr,TagldxBytes

2.9.

iTree iterators and queries

21

itertree Documentation, Release 0.8.2

» TagMultildx,slices
* for index lists you must give[[1,2,3,4]] because first level will be interpreted as
* alist targeting into the depth of the tree
e.g. by index
o my_tree.find_all(1) is same as my_tree[l]
* my_tree.find_all(‘child’) is same as my_tree[‘child’]

o my_tree.find_all(Tagldx(‘child’, 1)) is same as ‘my_tree[Tagldx(‘child’ 1)]

2. Give a list of normal keys:
e.g. by index
* “my_tree.find_all([1,2])"is same as my_tree[1][2]
* my_tree.find_all([‘child’,’sub_child’]) delivers an iterator over all “sub_child” families
found
in all “child” families

» my_tree.find_all([Tagldx(‘child’, 1), Tagldx(‘sub_child’,1)]) is same as
‘my_tree[Tagldx(‘child’,1)][Tagldx(sub_child’,1)]

3. Give iTMatch() object or list of iTMatch() objects:

An iterator of all matching tags will be created the matches will be combined with the and operation. You
can also use an item_filter containing the Filter.iTFilterltemTagMatch to have the same functionality. In
case a list is given the find_all() function is again going one level deeper for each element in the list.

Parameters

* key_path - iterable/iterator that addresses items in the tree (see above explanations and
examples)

e item_filter — item_filter method

e str_path_separator — In case of string tags the user can give also strings that
are internally casted into a list by using the str_path_separator (default="/") e.g.:
“/child_tag/sub_child_tag” -> [“child_tag”,”sub_child_tag”]

» str_index_separator — In case of string tags the user can give Tgaldx also by string
definition this is the separator used to separate the index number from the tag (default="#")
e.g. “child_tag#89” -> Tagldx(“child_tag”,89)

Returns
iterator over the matches or in case of no match found an empty list -> []
For filter creation we have some helper classes (itree_filter.py)

itertree.Filter.iTFilterTrue()
This filter might be useless but it delivers True for all items (or False if inverted).

Parameters

» pre_item_filter — Additional filter to combine with this filter (will always be calculated
before this filter)

22 Chapter 2. Tutorial

itertree Documentation, Release 0.8.2

» invert — True - invert the result of the filter (not) False (default) - result of filter is kept
unchanged

» use_and — True (default) - combine this filter with item_filter via and operator False - use
or operator instead of and

itertree.Filter.iTFilterItemType()
Filter for iTree types (we have iTree,ITreeReadOnly,iTreeTemporary,iTreeLink types)

Parameters
e item_type — target type class

» pre_item_filter — Additional filter to combine with this filter (will always be calculated
before this filter)

» invert — True - invert the result of the filter (not) False (default) - result of filter is kept
unchanged

* use_and — True (default) - combine this filter with item_filter via and operator False - use
or operator instead of and
itertree.Filter.iTFilterItemTagMatch()
Filter using the iTMatch object (have a look on th iTMatch for more details). In generalyou can use wild cards,
etc. to find matching item tags
Parameters

» match — iTMatch object that checks the item for a match

» pre_item_filter — Additional filter to combine with this filter (will always be calculated
before this filter)

e invert — True - invert the result of the filter (not) False (default) - result of filter is kept
unchanged

* use_and — True (default) - combine this filter with item_filter via and operator False - use
or operator instead of and

itertree.Filter.iTFilterData()

This is the main data filter that allows a large number of different filtering based on iTree.data content. It’s the
recommended filter for this proposes because different than the simpler data filters in this module we can filter
based on combinations (key/value) related to the iTree.data items

Parameters

» data_key — Checks if the given data key exists in item.data in case iTMatch is given match-
ing keys will be considered None - all keys will be considered

» data_value — Checks if the given data value exists in item.data in case iTMatch is given
matching values will be considered, if iTInterval is given numerical values matching to in-
terval will be considered. None - all values will be considered

» pre_item_filter — Additional filter to combine with this filter (will always be calculated
before this filter)

e invert — True - invert the result of the filter (not) False (default) - result of filter is kept
unchanged

* use_and — True (default) - combine this filter with item_filter via and operator False - use
or operator instead of and

2.9. iTree iterators and queries 23

itertree Documentation, Release 0.8.2

itertree.Filter.iTFilterDataKey ()
Filters in all items for the data key given. Delivers all items that have the given key in there data

Parameters
» data_key — Checks if the given data key exists in item.data

* pre_item_filter — Additional filter to combine with this filter (will always be calculated
before this filter)

* invert — True - invert the result of the filter (not) False (default) - result of filter is kept
unchanged

* use_and — True (default) - combine this filter with item_filter via and operator False - use
or operator instead of and

itertree.Filter.iTFilterDataKeyMatch()

Filters in all items for the data key which matches to the given pattern (fnmatch search is used) you can use
wildcards here. This filter works only on string or byte keys in the item.data (not on other objects)

Parameters
* match_pattern - string/bytes that contains a match pattern

» pre_item_filter — Additional filter to combine with this filter (will always be calculated
before this filter)

e invert — True - invert the result of the filter (not) False (default) - result of filter is kept
unchanged

* use_and — True (default) - combine this filter with item_filter via and operator False - use
or operator instead of and

itertree.Filter.iTFilterDataValueMatch()

Filters in all items for containing a matching data value to given pattern. (Works only on string and byte values
Parameters
* match_pattern - pattern fnmatch will search for (you can use wildcards here)

» pre_item_filter — Additional filter to combine with this filter (will always be calculated
before this filter)

» invert — True - invert the result of the filter (not) False (default) - result of filter is kept
unchanged

* use_and — True (default) - combine this filter with item_filter via and operator False - use
or operator instead of and

Depending on the data stored in the i7ree.data object the user might create own filters. In general just a method must
be created that takes the item as an argument and that delivers True in case of a match and False in case of no match.
We have also a base class (super-class) of the given filters available which might be used for own filters too.

itertree.Filter.iTFilterBase()
Base/Super class for all itertree filter classes might be used for user defined filters too

Parameters
o filter_method — method that is fet with an iTree item and that delivers True/False

» pre_item_filter — Additional filter to combine with this filter (will always be calculated
before this filter)

e invert — True - invert the result of the filter (not) False (default) - result of filter is kept
unchanged

24 Chapter 2. Tutorial

itertree Documentation, Release 0.8.2

» use_and — True (default) - combine this filter with item_filter via and operator False - use
or operator instead of and

The fitering in iTree is very effective and quick. As an example one might execute the example script
itree_usage_examplel.py where the itertree.Filter.iTFilterData object is used.

2.10 iTree formatted output

itertree.iTree.__repr__Q

create representation string from which the object can be reconstructed via eval (might not work in case of data
that do not have a working repr method) :return: representation string

itertree.iTree.renders()

render the {Tree into a string

Parameters
item_filter - the items can be filtered by giving a filter constants or giving a filter method or
iTFilter object

Returns
Tree representation as string

itertree.iTree.render()

print the rendered the iTree string to the terminal

Parameters
item_filter - the items can be filtered by giving a filter constants or giving a filter method or
iTFilter object

2.11 iTree file storage

itertree.iTree.dump()

serializes the iTree object to JSON (default serializer) and store it in a file
Parameters
* target_path — target path of the file where the iTree should be stored in
» pack — True - data will be packed via gzip before storage
» calc_hash - True - create the hash information of iTree and store it in the header
» overwrite — True - overwrite an existing file

Returns
True if file is stored successful

itertree.iTree.dumps()

serializes the iTree object to JSON (default serializer)

Parameters
calc_hash — Tell if the hash should be calculated and stored in the header of string

Returns
serialized string (JSON in case of default serializer)

2.10. iTree formatted output 25

itertree Documentation, Release 0.8.2

itertree.iTree.load()

create an iTree object by loading from a file

If not overloaded or reinitialized the iTree Standard Serializer will be used. In this case we expect a matching
JSON representation.

Parameters
» file_path - file path to the file that contains the iTree information

» check_hash — True the hash of the file will be checked and the loading will be stopped if it
doesn’t match False - do not check the iTree hash

* load_links — True - linked iTree objects will be loaded

Returns
iTree object loaded from file

itertree.iTree.loads()
create an iTree object by loading from a string

If not overloaded or reinitialized the iTree Standard Serializer will be used. In this case we expect a matching
JSON representation.

Parameters
» data_str — source string that contains the iTree information

» check_hash — True the hash of the file will be checked and the loading will be stopped if it
doesn’t match False - do not check the iTree hash

* load_links — True - linked iTree objects will be loaded

Returns
iTree object loaded from file

The file storage methods and the rendering methods are initialized by:

itertree.iTree.init_serializer()

Method sets the exchange environment that should be used. If you leave the parameters as default, the standard
objects will be used.

Note: The method logic is called only one time the first time serializing is needed.

Parameters
» force - False (Default) - do not reload in case we have already loaded the items
* exporter — exporter object for file export of iTree (dump, dumps)
* importer - importer object in ces a file import is done (load, loads)
» serializer — Object serializer (especially needed for data objects!)
» renderer - A renderer for pretty print output of the iTree object
Returns

None

This method is implicit executed and set to the default serializing functions of itertree. The user might load his own
functionalities explicit by using this method or he might overload the iTree class and the init_serializer() method with
his own functionality (e.g. an xml export/import might be realized by this).

26 Chapter 2. Tutorial

itertree Documentation, Release 0.8.2

2.12 iTree linked sub-trees

The iTree objects can be merged to one main tree from different source files by using the iTreeLink class. The result is
a merged iTree that contains all the linked subtrees. Beside the linking from different files links inside a iTree structure
(internal links) can be defined too.

Additionally the user can manipulate the linked items by making them local (covering) or by appending local items.
The functionalities given here are limited to operations that do not imply a reordering of the elements in the tree. The
reason for this is that the linked items cannot be reordered furthermore they gave the tree a fixed, static structure. E.g.
mainly we have append() and make_self local() functions and we cannot appendleft() or insert() because this would
mean we have to reorder the other elements. A change of a linked structure can only be made by manipulating the
original source structure. We allow only the localization of items that are a child of the linked root element, in deeper
levels this is not possible.

The local items in a linked i7ree are integrated in the tree during the load process of the linked elements. The iden-
tification is always made via the Tagldx of the item. The local storage of the tree contains iTreePlaceholder elements
which will be replaced by the linked in elements during the load process. Those placeholders are needed to create the
matching tag-idx combination for the real elements that should be kept after reload. In case the loaded structure is
changed and and no matching item is found the iTreePlaceHolder items will remain in the i7ree. All appended local
items which are outside of the linked structure will be found at the end of the itertree.

Local items can be manipuplated as normal iTree items with one exception. In case a local item is deleted and a
matching linked item is available (was covered by the local item) the linked item will replace the local element after
deletion. This means in this case a delete of an item will not reduce the numbers of the elements. If the local item has
no corresponding linked item the number of children will decrease as usual.

The linked items must be loaded by an explizit operation. They are not loaded automatically. The links must be loaded
via the load_links() method which can be executed at any level of the tree and it will start loading all links in the
subtree (use load_links() on the iTree root to be sure to load all links). The behavior in case of load erros can be
switched between Exceptions or deleting invalid elements (delete_invalid_items parameter). In case of exceptions the
iTree is in an incomplete load state and if the exception is kept this must be handled (e.g. copy original tree before
loading and replace back). The commands for loading iTree files can be influenced by the load_links parameter (to
activate or deactivate the link loading) during file load.

Warning: The user must be aware that changing the source structure and local items in parallel might lead to
unexpected results. The identification of local items is always done via the Tagldx. If we miss items during load
placeholders are used to keep the Tagldx of the “real” local items. Normally those artefacts will be replaced during
the load with linked items (if found) but in case of missmatches they will stay in the tree. Using wild linking in
between different i7ree elements can lead into very confusing situations especially if the user removes local items.
We recommend to use the feature only in special cases where the source architecture is clearly defined and remains
structural relative stable. For stability reasons we have also functional limitations in iTreeLink objects (e.g. we do
allow only linking on not already linked elements (protection for circular definitions); local items cannot be linked
items or temporary items).

itertree.iTreelLink(tag, data=None, subtree=None, link_file_path=None, link_key_path=None,
load_links=True)

This class is used to define linked subtrees in a iTree object. The target source can be a subtree in another iTree
related file (external links) or internal links to a subtree of the already loaded subtree.

Linking has some functional limitations so is it not allowed to link to already linked objects (we must protect
iTree from circular definitions).

The iTreeLink objects supports local items which can be added additional to the linked items. Furthermore there
is also a mechanism so that local items can overlay the linked items in the tree. This is done by localizing the
linked items with the make_child_local() or make_self_local() method. Afterwards the item can be manipulated

2.12. iTree linked sub-trees 27

itertree Documentation, Release 0.8.2

as a normal iTree object. Only exception is that after deleting such a overlaying item the linked item will come
back into the iTree.

itertree.iTreeLink.load_links()
load all linked items

Parameters

 force - False (default) - load only if not already loaded True - load even if already loaded
(update)

e delete_invalid_items — False (default) - in case of invalid items we will raise an excep-
tion! True - invalid items will be removed from parent no exception raised

» _items - internal list parameter used for recursive calls of the function
Returns
* True - success
* False - load failed
Beside this the following specific functions are available on linked items:

itertree.iTreelLink.make_self_local ()

make the current linked object a local object This is only possible if the parent parent is a normal iTree object ->
only the first level children in a linked iTree can be made local The operation raises an SyntaxError in case it is
used on a deeper level of the linked tree

Returns
None
itertree.iTreeLink.make_child_local ()

make the item related to the given key a local object This is only possible if the parent of self is a normal iTree
object -> only the first level children in a linked iTree can be made local The operation raises an SyntaxError in
case it is used on a deeper level of the linked tree

Parameters
key — identification key for the child item that should be converted in a local item

Returns
None

itertree.iTreelLink.iter_locals()

iterator that iterates only over the local elements

Parameters
add_placeholders - If this flag is set the (normally ignored) placeholder items are included in
the iteration

Returns
iterator over local items

For a better understanding please have a look in the example file examples/itree_link_examplel.py in the package. That
contains the following examples too.

Special functionalities related to linking of iTrees:

To link a subtree in the current tree the iTreeLinked class is used.

28 Chapter 2. Tutorial

itertree Documentation, Release 0.8.2

>>> #lWe create a small iTree:
>>> root = iTree('root')
>>> root += iTree('A")
>>> root += iTree('B'")
>>> # we add "B" tag two times to get an enumerated tag family
>>> B=iTree('B')
>>> B +=iTree('Ba')
>>> #we create multiple 'Bb' elements to show how the placeholders are used during save.
—and load
>>> B +=iTree('Bb")
>>> B +=iTree('Bb")
>>> B +=iTree('Bc")
>>> root += B
>>> #Now we create a internal link (but we disable the loading -> load_links=False):
>>> linked_element=iTreeLink('internal_link',link_key_path='/B',load_links=False)
>>> root.append(linked_element)
>>> print(root.render())
iTree('root')
L—iTree('A")
L—iTree('B")
L _iTree('B')
L _iTree('Ba')
L—iTree('Bb")
L—iTree('Bb")
L _iTree('Bc')
L _iTreeLink('internal_link', link=iTreeLink(file_path=None, key_path=['/",.
—TagIdx(tag='B', idx=1)]))
>>> # now we load the links:
>>> root.load_links()
>>> print(root.render())
iTree('root")
L _iTree('A")
L _iTree('B")
L—iTree('B")
L—iTree('Ba')
L—iTree('Bb")
L—iTree('Bb")
L _iTree('Bc')
L —iTreeLink('internal_link', link=iTreeLink(file_path=None, key_path=['/",.
—TagIdx(tag='B', idx=1)]1))
L _iTreeLink('Ba')
L—iTreeLink('Bb")
L —iTreeLink('Bb")
L _iTreeLink('Bc"')

As shown in the example the internal linked element contains now the same subtree as the element “B”. But they are
integrated as iTreeLink objects which protects the items from changes (readonly). If we change the elements in the “B”
item the changes are only considered if we reload the links in the tree!

>>> B +=1iTree('B_post_append')
>>> print(root.render())
iTree('root")

L _iTree('A")

(continues on next page)

2.12. iTree linked sub-trees 29

itertree Documentation, Release 0.8.2

(continued from previous page)

L _iTree('B")
L _iTree('B")
L _iTree('Ba')
L—iTree('Bb")
L—iTree('Bb")
L _iTree('Bc")
L —iTree('B_post_append')
L —iTreeLink('internal_link', link=iTreeLink(file_path=None, key_path=['/",.
—TagIdx(tag='B', idx=1)]))
L _iTreeLink('Ba')
L —iTreeLink('Bb")
L —iTreeLink('Bb"')
L —iTreeLink('Bc')
>>> root.load_links(force=True) # we must force the reloading, if not forced already.
—loaded trees will not be updated
>>> print(root.render())
iTree('root"')
L _iTree('A")
L _iTree('B")
L—iTree('B")
L _iTree('Ba")
L—iTree('Bb")
L—iTree('Bb")
L—iTree('Bc")
L —iTree('B_post_append')
L iTreeLink('internal_link', link=iTreeLink(file_path=None, key_path=['/",.
—TagIdx(tag='B', idx=1)]))
L —iTreeLink('Ba')
L —iTreeLink('Bb")
L _iTreeLink('Bb")
L _iTreeLink('Bc"')
L _iTreeLink('B_post_append')

The toplevel iTreeLink object allows manipulations of the subtree. We can append elements and we can change existing
subitems to a local item taht covers the linked item and that can contain diffrent data and different children.

>>> #get the linked element
>>> il=root[TagIdx('internal_link',0)]
>>> #append an item
>>> il.append(iTree('new'))
>>> #we make second element local and append a item in the subtree
>>> local=il.make_child_local(2)
>>> local+=iTree('sublocal')
>>> print(root.render())
iTree('root')
L—iTree('A")
L _iTree('B")
L _iTree('B")
L _iTree('Ba")
L—iTree('Bb")
L —iTree('Bb")
L _iTree('Bc")

(continues on next page)

30 Chapter 2. Tutorial

itertree Documentation, Release 0.8.2

(continued from previous page)

L _iTree('B_post_append")
L _iTreeLink('internal_link', link=iTreeLink(file_path=None, key_path=['/',.

—TagIdx(tag='B', idx=1)]))

L —iTreeLink('Ba')

L—iTreeLink('Bb")

L—iTree('Bb")

L —iTree('sublocal")

L _iTreeLink('Bc")

L —iTreeLink('B_post_append")

L—iTree('new")

The element ‘Bb’ in the linked subtree is now no more an iTreeLink object, its a normal i7ree object. The identification
of the covering item is internally always done via the Tagldx of the item. We can do all i7ree related operations on this
object. But there is one exception: if we delete the object the linked object will come back into the tree!

>>> del i1[TagIdx('Bb',1)]
>>> print(root.render())
iTree('root")
L—iTree('A")
L—iTree('B")
L_iTree('B")
L _iTree('Ba")
L—iTree('Bb")
L _iTree('Bb")
L—iTree('Bc")
L _iTree('B_post_append")
L _iTreeLink('internal_link', link=iTreeLink(file_path=None, key_path=['/',.
—TagIdx(tag='B', idx=1)1))
L _iTreeLink('Ba")
L—iTreeLink('Bb")
L—iTreeLink('Bb")
L _iTreeLink('Bc"')
L _iTreeLink('B_post_append")
L _iTree('new')

The link functionality in iTrees can be understood like the overloading mechanism of classes. By linking a subtree in
the tree this is like defining a superclass for a specific tree section. By making a subitem local this part of the linked
iTree is covered (overloaded). But we should not stress this analogy to much because the functionalities in this covered
data structures are much less then we have it for the class concept.

2.13 iTree helpers classes

In the itertree helper module we have some helper classes that can be used to construct specific iTree objects.
We have the following helper classes available:

itertree.itree_helpers.iTInterval()

helper class that defines an interval for range definitions in Data Models or Filters
the class contains a check if a given value is in the defined interval or not

The class might be a little bit under estimated in all the itertree functionalities but its a short but very powerful
implementation of an Interval class for python.

2.13. iTree helpers classes 31

itertree Documentation, Release 0.8.2

The class contains anything you might need in case of a Interval functionality. You can given open/closed interval
definitions including infinite limits. The intervals can be combined to a mathematical set via the pre_interval
parameter. And the check method allows to give other limits as defined. This is especially useful for dynamically
calculated limits.

The interval definition is also possible via a mathematical string like: “(1,2)” or “[10,+inf)”.

If you need a more advanced implementation you might have a look on the intervals/portion python package.

Note: For equal just set upper_limit to None (upper_open, lower_open parameter will be ignored in this case)

itertree.itree_helpers.iTInterval.__init__Q

helper class that defines an interval for range definitions

the class contains a check if a given value is in the defined interval or not

Note: For equal you give lower_limit and set upper_limit to None (lower_open,upper_open parameters will be

ignored in this case). The math representation in this case is “== %s”%lower_limit

Note: The not_in=True can be given to invert the interval check result (match is anything outside the interval)
in the math representation we add in this case a “!” before the interval

Note: Cascade interval definitions can be created the pre_interval definition e.g. math_repr= “(([1,5]) and
[9,12]) and [100,200]" valid values: 1...5,9...12,100..200

Parameters
e lower_limit — lower limit of the interval
e upper_limit — upper limit of the interval
» lower_open — True - open interval (x>lower_limit) False - closed interval (x>=lower_limit)
* upper_open — True - open interval (x<upper_limit) False - closed interval (x<=upper_limit)
e not_in — False - check for in interval True - check for not in interval (outside)
» pre_interval — Interval object to be checked before this interval

» pre_and — True - combine the result of pre check with and this Interval check with the and
operator False - combine the result of pre check with and this Interval check with the or
operator

» str_def —instance the object from given math_repr string (other parameters will be ignored
in this case)

itertree.itree_helpers.iTMatch()

The match object is used to defined match to elements in the DtaTree used in iterations over the DataTree The
defined iMatch object can be used for checks against iTree objects (mainly for checks against the tag and also for
string matches e.g. for finding iTree.data.keys() or .values() in filters.

32 Chapter 2. Tutorial

itertree Documentation, Release 0.8.2

itertree.itree_helpers.iTMatch.__init__Q

Create a match pattern for different proposes. Depending on the type we have following functions:
* int - check for an index
» Tagldx - check for a Tagldx
e str - string pattern using fnmatch

« iterable like list, tuple, ... combine the given patterns with the combine key

Parameters
* pattern — give pattern
» combine_or — True - or ; False - and; combination of matches/match patterns
itertree.itree_helpers.TagIdx()
Tagldx(tag, idx)

itertree.itree_helpers.TagIdxStr()
Define a Tagldx by a sting with an index separator (default="#")

Example: “mytag#1” will be translated in the Tagldx(“mytag”,1)

Note: This makes only sense and can only be used if the tag is a string (not for other objects)

Parameters
tag_idx_str - string containing the definition

itertree.itree_helpers.TagIdxBytes()
Define a Tagldx by bytes with an index separator (default=b’#’)

Example: b”’mytag#1” will be translated in the Tagldx(b”’mytag”,1)

Note: This makes only sense and can only be used if the tag is a byte (not for other objects)

Parameters
tag_idx_bytes — bytes containing the definition

The other classes in itree_helpers are used internally in the iTree object and might be less interesting for the user.

Addinionally the user might have also a look in the other itertree modules like itertree_data.py or itertree_filter.py.
Especially the class iTDataModel might be a good starting point for own data model definitions as it is also shown in
examples/itertree_data_model.py.

itertree.itree_data.iTDataModel ()

The default iTree data model class This the interface definition for specific data model classes that might be
created using this superclass

The data model checks the given value for a specific data item. So that we can ensure that the given value matches
to the expectations. We can check for types, shapes (length), limits, or matching patterns.

Besides the check we can also define a default formatter for the value that is used when it is translated into a
string.

(see examples/itree_data_examples.py)

2.13. iTree helpers classes 33

itertree Documentation, Release 0.8.2

34

Chapter 2. Tutorial

CHAPTER
THREE

ITERTREE PACKAGE

3.1 Indices and tables

* genindex

e search

3.2 Modules

3.3 The main itertree class

This code is taken from the itertree package: https://pypi.org/project/itertree/ GIT Home: https://github.com/BR 1py/
itertree The documentation can be found here: https://itertree.readthedocs.io/en/latest/index.html

The code is published under MIT license:
The MIT License (MIT) Copyright © 2022 <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

For more information see: https://en.wikipedia.org/wiki/MIT_License
This part of code contains the main iTree object

class itertree.itree_main.iTree(tag, data=None, subtree=None)
Bases: 1list

This is the main class related to iTrees.

This object is the parent of a sub-tree (children, sub-children, etc.). The iTree object itself can also be a child of
a parent iTree object. If this is not the case the iTree object is the root of the tree.

35

https://pypi.org/project/itertree/
https://github.com/BR1py/itertree
https://github.com/BR1py/itertree
https://itertree.readthedocs.io/en/latest/index.html
https://en.wikipedia.org/wiki/MIT_License

itertree Documentation, Release 0.8.2

A iTree object can only be integrated in one tree (one parent only)!

Each iTree object contains a tag. In case your tags are stings it’s recommended to use tag strings without wildcards
“¥» 7 and without the standard separators “/” and “#”. If you use these characters you might get confusing
results in find, filter and match operations.

In general we allow all hashable objects to be used as a tag in the iTree objects (only search operation might be
limited in this case). But we have two exceptions: We do not allow integers and Tagldx objects as tags because
those objects used for direct item access.

Different than in dictionaries it is allowed to put multiple times the same tag inside the iTree. The items with the
same tag are placed and ordered (enumerated) in the related tag-family. They can be reached via Tagldx objects
by giving the tag, index pair (tag_idx).

Linked iTree objects will behave different. They have aread only structure (children) and they contain the children
(tree) of the linked iTree. The “local” attributes like tag, data, ... can be set independent from the linked item
(local properties). To change the tree structure of such an object you must manipulated the source object and
reload the link.

Additionally a iTree object can contain:
 data - a iTData object to store any kind of python objects
* couple - you can couple the object to another one by giving a pointer

* is_temporary - you can mark it as temporary. Those iTree items behave like normal ones. But they will not
be considered during encoding for storage, etc.

There are different ways to access the children and sub-children in the tree of a iTree object.
The standard access for single items is via itree_obj[] (__getitem__()) call.

More complex access is available via find() and findall() methods. Have a look in the documentation related to
each method.

The delivery of access related operations in the iTree objects is for unique targets an iTree object and for multi
target operations an iterator over the matching items. We don’t deliver something like a list.

If really needed an iterator can be easily converted into a list by list() method but this may take a long time for
huge iterators. The iterator should only be used in the final step of the operation. It’s recommended to have a
look into itertools for better usage of the delivered iterators.

The design of the object is made to have best possible performance even that it is pure python. For more details
you may run the performance tests in the test section (But you might have to install additional packages run the
comparisons and to get the full picture.)

The function related to iterations iter; iter_children and find_all can be used with an item_filter. By this mecha-
nism you can create queries regarding any property in an iTree.

To initialize the class the following parameters are available
Parameters
* tag - tag string or hashable object used for the iTree identification
» data - data dict or item to be stored in the node

» subtree — The subtree is a iterable structure that contains sub-items (iTree objects) that
should be the children of this iTree.

Warning: subtree: In case the given iTree objects have already a parent an implicit copy
will be made.

36

Chapter 3. itertree package

itertree Documentation, Release 0.8.2

init_serializer (force=Fulse, exporter=None, importer=None, serializer=None, renderer=None) — None

Method sets the exchange environment that should be used. If you leave the parameters as default, the
standard objects will be used.

Note: The method logic is called only one time the first time serializing is needed.

Parameters
¢ force - False (Default) - do not reload in case we have already loaded the items
* exporter — exporter object for file export of iTree (dump, dumps)
e importer — importer object in ces a file import is done (load, loads)
» serializer - Object serializer (especially needed for data objects!)
¢ renderer — A renderer for pretty print output of the iTree object
Returns

None

sort (*arg, **kwargs)

sort operation is not supported, method exists just because super class supports it. Here a TypeError will
be raised.

property data
delivers the data-attribute object of the item

Returns
data object of the item

d_set (*args, **kwargs)

set function for a data-attribute
In case the standard iTData object is used we have:
Parameters

* key — give key under which the data will be stored, in case data is None the first key
parameter is taken as data object and it is stored in the “__NOKEY__” item

» value - data value the object that should be stored in the data structure of this iTree

Returns
None

d_get (key=('__iTree_NOKEY.
get function for a data attribute

"), return_type=0)

In case the standard iTData object is used we have:

Parameters
key — key under which the data is stored, in case no key is given the “__NOKEY__” item
will be returned

Returns
data attribute object

3.3.

The main itertree class 37

itertree Documentation, Release 0.8.2

d_update(*args, **kwargs)

update function data-attribute
In case the standard iTData object is used we have:
Parameters

» key — give key under which the data will be stored, in case data is None the first key
parameter is taken as data object and it is stored in the “__NOKEY__” item

* value — data value the object that should be stored in the data structure of this iTree

Returns
None

d_check (value, key=("__iTree_NOKEY__",))

check if the given data-item can be stored under the given key. The check make only sense in case there is
a iTreeDataModel or matching object is already stored under the key

Exception
check will raise an iDataValueError or iDataTypeError exception in case the value is not
matching in case given key is not found a KeyError will be raised

Parameters
» value - data value the object that should be checked

* key — give key under which contains the DataModel, in case key is not given the
“_NOKEY__” item will be used

Returns
valid value

d_pop (*args, **kwargs)
data related pop (will delete the given key from data-attribute)

Returns
deleted value

d_del (*args, **kwargs)
data related del (will delete the given key)

Returns
deleted value

property parent

property contains the parent item

Returns
iTree parent object (or None in case no parent exists)

property is_root
is this item a root item (has no parent)

Returns
True/False

property root

property delivers the root item of the tree

Returns
iTree root item

38

Chapter 3. itertree package

itertree Documentation, Release 0.8.2

property is_read_only

In contrast to iTreeReadOnly class this is False

Returns
False
property is_temporary
In contrast to iTreeTemporary class this is False

Returns
False
property is_placeholder
In contrast to iTreePlaceholder class this is False
Returns
False
property is_linked
In contrast to iTreeLinked class this is False

Returns
False
property link_item

in case we have “covered” a linked item this property delivers the original linked item (mainly for internal
use)

Returns
None - no linked item iTreeLink object the covered item

property pre_item
delivers the pre item (predecessor) of this object

Returns
iTree predecessor or None (no match)

property post_item

delivers the post item (successor)

Returns
iTree successor or None (no match)

property depth_up
delivers the distance (number of levels) to the root element of the tree

Returns
integer
property max_depth_down

delivers the max_depth in the direction of the children

Returns
integer maximal children depth

property idx_path
delivers the a list of indexes from the root to this item

Returns
list of index integers (here we do not deliver an iterator)

3.3. The main itertree class 39

itertree Documentation, Release 0.8.2

property tag_idx_path

delivers the a list of Tagldx objects from the root to this item

Returns
list of Tagldx (here we do not deliver an iterator)

property tag_idx

Get the Tagldx object related to this object (contains the tag and the index of the object in the tag-family)

Returns
Tagldx

property tag

This objects tag

Returns
tag object

property idx

Index of this object in the iTree

Returns
integer index

property coupled_object

The iTree object can be couple with another python object. The pointer to the object is stored and can
be reached via this property. (E.g. this can be helpful when connecting the iTree with a visual element
(tree-list item) in a GUI)

Returns
pointer to coupled object

set_coupled_object (coupled_object)

User can couple this object with others with the help of this attribute .. note:: E.g. this might be an object
in a GUI that are related to this item

Parameters
couple_object — object pointer to the object that should be coupled with this iTree item

equal (other, check_parent=False, check_coupled=False)

compares if the data content of another item matches with this item
Parameters
e other - other iTree
» check_parent — check if item has same parent object too? (Default False)
¢ check_coupled - check the couple object too? (Default False)

Returns
boolean match result (True match/False no match)

copy (*args, **kwargs)

create a copy of this item

The difference in between copy and deepcopy for iTree is just that we do in deepcopy a copy of all data
items too. In copy we just copy the iTData object not the items itself, they stay as pointers to the original
objects.

The function is used internally in extend operations too. And we can see (profiler) that improvements in
this method might have big impact.

40

Chapter 3. itertree package

itertree Documentation, Release 0.8.2

Returns
copied iTree object
deepcopy (*args, **kwargs)
create a deepcopy of this item
The difference in between copy and deepcopy for iTree is just that we do in deepcopy a copy of all data

items too. In copy we just copy the iTData object not the items itself, they stay as pointers to the original
objects.

Returns
deep copied new iTree object
count (item_filter=None)

count the number of children that match to the given filter :: note: The operation is not very quick on huge
iTrees and complicate filters!

Parameters
item_filter -

Returns
integer number of children matching to the filter
count_all (item_filter=None)

count deep the number of children and sub children the element has and that match to the given filter ::
note: The operation is not very quick on huge iTrees and complicate filters!

Parameters
item_filter —

Returns
integer number of children matching to the filter
get_deep (key_list)
deep key access the function is a replacement for selffkey_list[0]][key_list[1]]... [key_list[-1]] but you can
also feed with an iterator

dives into the tree key_list=[1,0,2] -> second element level 1 -> first element level 2 -> third element level
3 -> same as self[1][0][2]

Note: Each key in the key list must target to a single item only! E.g. do not use tags here they deliver
always a family iterator not a single item (the method will raise an exception). Use index integers or Tagldx
objects instead

Parameters
key_list — list or iterator of keys (indexes,Tagldx, tuple(tag,index) -> only in case no tuple
tags!

Returns

iTree object the key list targets

clear()
deletes all children and data! All flags stay unchanged!

insert (insert_key, item)

Insert an item before a specific position

Parameters

3.3.

The main itertree class 41

itertree Documentation, Release 0.8.2

* insert_key - position key (integer index or Tagldx)
e item — item that should be inserted in the tree (new child)
append (item)
Append the given iTree object to the tree (new last child)

Except
raise TypeError in case iTree object has already a parent

Parameters
item - iTree object to be appended

Returns
True in case append was successful

appendleft (item)
Append the given iTree object to the left of the the tree (new first child)

Except
raise TypeError in case iTree object has already a parent

Parameters
item — iTree object to be appended

extend (extend_items)

We extend the iTree with given items (multi append)

Note: In case the extend items have already a parent an implicit copy will be made. We do this because we
might get an iTree-object as extend_items parameter and then the children will have automatically a parent
even that the parent object might be a temporary one.

Parameters
extend_items — iterable object that contains iTree objects as items

Returns
True

extendleft (extend_items)

We extend the iTree with given items in the beginning (multi appendleft)

Note: In case the extend items have already a parent an implicit copy will be made. We do this because we
might get an iTree-object as extend_items parameter and then the children will have automatically a parent
even that the parent object might be a temporary one.

Note: The extendleft() operation is a lot slower then the normal extend operation

Parameters
extend_items - iterable object that contains iTree objects as items

pop (key=- 1)

pop the item out of the tree, if no key is given the last item will be popped out

42

Chapter 3. itertree package

itertree Documentation, Release 0.8.2

Parameters
key — specific identification key for an item (integer index, Tagldx)

Returns
popped out item (parent will be set to None)

popleft()
pop the first item out of the tree

Returns
popped out item (parent will be set to None)

remove (item)

remove the given item out of the tree (delete the child)

Parameters
item — iTree object that should be removed from the tree

Returns
removed item will be returned (parent is set to None)

move (insert_key)
move the item in another position

Parameters
insert_key — item will be insert before this key

rename (new_tag)
give the item a new tag

Parameters
new_tag — new tag object string or hashable object

reverse()
reverse the order of all children in the iTree object

rotate(n)
rotate children of the iTree object n times (rotate 1 times means move last element to first position)
Parameters
n-
iter_all (item_filter=None, filter_or=True)

main iterator for whole tree runs in top-> down order e.g.

iTree('child")
L—iTree('sub®"')
L—iTree('sub®_0"
L—iTree('sub®_1"
L _iTree('sub®_2'
L _iTree('sub®_3"
L—iTree('subl")
L _iTree('subl_0")

)
)
)
)

will be iterated like:

iTree('child")
iTree('sub0®")
iTree('sub0®_0")

(continues on next page)

3.3. The main itertree class 43

itertree Documentation, Release 0.8.2

(continued from previous page)

iTree('sub®_1")
iTree('sub0®_2")
iTree('sub®_3")
iTree('subl')

iTree('subl_0")

Parameters

e item_filter - filter for filter the items you can give a filter constant or a method for
filtering (should return True/False)

e filter_or —

— True - we combine the filtering with or this means even if we have no match in the higher
levels of the tree we will go deeper to find matches

— False - filters are combined with and which means children will only be parsed in case
the parent matches also to the filter condition

Returns
iterator

iter_all_bottom_up (item_filter=None, filter_or=True)
main iterator for whole tree runs in down-> top order (We start at the children and afterwards the parents:
e.g.:

iTree('child")

L _iTree('sub®')
L _iTree('sub®_0")
L iTree('sub®_1")
L _iTree('sub®_2")
L _iTree('sub®_3")

L—iTree('subl')
L _iTree('subl_0")

Will be iterated:

iTree('sub0®_0")
iTree('sub®_1")
iTree('sub®_2")
iTree('sub®_3")
iTree('sub0')
iTree('subl_0")
iTree('subl")
iTree('child")

Parameters

e item_filter —filter method for filtering (should return True/False when fet with an item)
or iTFilter object

e filter_or —

— True - we combine the filtering with or this means even if we have no match in the higher
levels of the tree we will go deeper to find matches

44

Chapter 3. itertree package

itertree Documentation, Release 0.8.2

— False - filters are combined with and which means children will only be parsed in case
the parent matches also to the filter condition

Returns
iterator

iter_children (item_filter=None)
main iterator in children level
Parameters

item_filter - the items can be filtered by giving a filter constants or giving a filter method
or iTFilter object

Returns
iterator
iter_tag_idxs (item_filter=None)
iter over all children and deliver the children Tagldx
Parameters

item_filter - the items can be filtered by giving a filter constants or giving a filter method
or iTFilter object

Returns
iterator over the Tagldx of the children
iter_tag_idxs_all (item_filter=None)
Delivers an iterator over all items tag_idx_paths
Parameters

item_filter - the items can be filtered by giving a filter constants or giving a filter method
or iTFilter object

Returns
iterator over tuples of tag_idxs_paths of all items
iter_idxs_all (item_filter=None)
Delivers an iterator over all items index path tuples .. note:: This method is mainly usd for internal proposes
(max_depth_down)

Parameters
item_filter - item_filter filter method might be used

Returns
iterator over tuples of index paths of all items
find_all (key_path, item_filter=None, str_path_separator="/", str_index_separator="#")
The find all function works on all levels of the tree. The key_path given (e.g. a list of indexes) addresses
the items into the depth first item first level, second item second level,....

The method returns always an iterator or in case of no match an empty list! If you target to unique objects
you will get anyway an iterator containing this unique element.

Warning: It’s possible to create invalid recursions when constructing the key_path. In these cases the
recursion depth exceeded exception will be raised by the interpreter

In case the target in the upper keys is not unique, all matches will be delivered! e.g. The operation
my_tree.find_all([‘child’,’sub_child’]) takes first all items in the “child” family:

3.3.

The main itertree class 45

itertree Documentation, Release 0.8.2

Tagldx(‘child’,0),Tagldx(‘child’,1),. .. Tagldx(‘child’,n) in an iterator and in the next step the func-
tion will go one level deeper and will cumulate all the ‘sub_child’ families in these items as the
result:

This means we have something like this:
my_tree[Tagldx(‘child’,0)][Tagldx(‘sub_child’,0)],my_tree[Tagldx(‘child’,0)][Tagldx(‘sub_child’1)],...,
my_tree[Tagldx(‘child’,1)][Tagldx(‘sub_child’,0)],my_tree[Tagldx(‘child’,0)][Tagldx(‘sub_child’1)],...,

and in case of no match in the keys items are skipped.

Note: It’s not at all the same as: my_tree[‘child’][‘sub_child’] -> this operation will raise an
exception!

Note: When addressing a single item it’s quicker (~10x faster depending on tree depth) to use the
get_deep() method instead of the find_all() method.

The key_path parameter is very flexible in case of the objects you put in. We have several possibilities:
0. Special keys: We have the following special keys that might be used in the key_path:

e “/” default path separator (might be changed by str_path_separator parameter) If this is
the first key the find_all() search will be started in the root element not in the element the
method is called.

Note: Be careful with “//” or “/” placed not in the beginning of the path this will rollback
the find_all() to the root which means anything in the key_path before this key will be
ignored.

o “*¥”_wildcard will iterate over all children of the item

o “xx”_wildcard will iterate over all items of the item. The item itself is the first element of
the iterator delivered

Note: find_all(‘**’) creates an different iterator then iter_all() list(my_tree.find_all(“**’))
= [my_tree] + list(my_tree.iter_all())

Warning: It’s always recommended to avoid the usage of string tags containing functional
characters like “**77*” >/ »#7>7’ E.g. In case the iTree contains a family with the
tag “/” or “*” or “**” the related family will be delivered. The special functionality is
blocked in this moment (for “/” you might use the str_path_separator parameter to keep
the functionality). Also filtering via iTMatch objects is limited in this case.

1. Give normal keys like in __getitem__() method: normal keys can be:
* index integers
* tag strings

» Tagldx,TagldxStr,TagldxBytes

46 Chapter 3. itertree package

itertree Documentation, Release 0.8.2

* TagMultildx,slices
* for index lists you must give[[1,2,3,4]] because first level will be interpreted as
* alist targeting into the depth of the tree
e.g. by index
* my_tree.find_all(1) is same as my_tree[l]
* my_tree.find_all(‘child’) is same as my_tree[‘child’]
* my_tree.find_all(Tagldx(‘child’, 1)) is same as ‘my_tree[Tagldx(‘child’,1)]

2. Give a list of normal keys:
e.g. by index
* "my_tree.find_all([1,2])"is same as my_tree[1][2]

o my_tree.find_all([‘child’,’sub_child’]) delivers an iterator over all “sub_child”

families found
in all “child” families

o my_tree.find_all([Tagldx(‘child’, 1), Tagldx(‘sub_child’,1)]) is same as
‘my_tree[Tagldx(‘child’,1)][Tagldx(‘sub_child’,1)]

3. Give iTMatch() object or list of iTMatch() objects:

An iterator of all matching tags will be created the matches will be combined with the and operation.
You can also use an item_filter containing the Filter.iTFilterltemTagMatch to have the same function-
ality. In case a list is given the find_all() function is again going one level deeper for each element in
the list.

Parameters

¢ key_path — iterable/iterator that addresses items in the tree (see above explanations and
examples)

e item_filter —item_filter method

e str_path_separator — In case of string tags the user can give also strings that
are internally casted into a list by using the str_path_separator (default="/") e.g.:
“/child_tag/sub_child_tag” -> [“child_tag”,”sub_child_tag”]

* str_index_separator — In case of string tags the user can give Tgaldx also by string
definition this is the separator used to separate the index number from the tag (default="#")
e.g. “child_tag#89” -> Tagldx(“child_tag”,89)

Returns

iterator over the matches or in case of no match found an empty list -> []

find_all2 (key_path, item_filter=None, str_path_separator="'", str_index_separator="#', _initial=True)
Method is outdated use find_all instead!

The find_all function targets over multiple levels of the datatree, it returns a list or iterator of the matching
items!

The key_path parameter given is normally a list. This can be a list of keys or Tagldx objects. The function
will search for the first item in the first level, fo next item in the next level and so on...

Absolut and relative key_paths:

3.3. The main itertree class 47

itertree Documentation, Release 0.8.2

If the first item is the separator (default: ‘/*) the find search is like an absolute path and we start at the root
of the datatree. If the first item is different, the key_path is relative and we start from the actual item and
search the children and sub-children.

Single string key_path: If the user searches for string type tags he can use a string with a separator (default:
‘/’) in between the tags (These type of key_paths will be implicit translated in a list in the function). An
index separator (default = ‘#’) in between the tag and the index can also be used to identify to identify items
in the tag family. If the key_path argument is already a list the single keys will not be parsed regarding the
str_path_separator anymore.

HINT: Quickest find operations can be performed by giving a list containing index integers or Tagldx objects

The items can be filtered regarding specific content, for this a look into the available filer constructors:
create_xxx_item_filter() might be interesting. The filter method or the filter constant can be given in the
item_filter parameter

The parameters in detail:
Parameters

* key_path — single key or list of keys identification path for the item/items to be searched.
Possible keys: integer - behaves like normal __getitem__ () -> itree_item[key] Tagldx- be-
haves like normal __getitem__ () -> itree_item[key] iTreeTagSlice - select a tag sliced group
of sub-elements iTMatch - search pattern can be used too, but keep in mind it must deliver
a unique result! Slice - a slice of indexes (like a special index list) string - will be parsed
by the separators iterable list/tuple/deque,... -

run over single keys if sub_key is again an iterable it will be taken as an index list (e.g.
[1,2,3] - will go deeper in the tree 1. item; 2. subitem; 3. subsubitem but [[1,2,3]] -
will stay in the first level and deliver 1. item; 2. item; 3. item)

o item_filter —filters the item content regarding NORMAL, TEMPORARY and LINKED
flag or a given filtering method

e str_path_separator —separator character in case of strings for the search levels (default:
‘6/77)

* str_index_separator — separator character for given tag indexes (default: “#”)
e _initial - Internal flag that should protect against cyclic constructs

Returns
list or iterator of matching iTrees; in case of no match and empty list is returned

find Ckey_path, item_filter=None, default_return=None, str_path_separator="", str_index_separator="#")

The find function targets over multiple levels of the iTree, it returns single items only! This means in case
the key_path targets to multiple items the default_return will be given. If the key_path targets to a family
with only one item inside or the item_filter extracts only one item in a family the item will be given back
as result. For multiple result utilize the find_all() method (which is slower).

Note: The method will deliver a default_return when ever in the whole key_path a match is not unique.
This means iteration is stopped here and even that a deeper iteration with the defined filtering might deliver
at least a unique result. To ensure to find this deeper results you must utilize the slower find_all() method.

The key_path parameter given is normally a list. This can be a list of keys or Tagldx objects. The function
will search for the first item in the first level, fo next item in the next level and so on...

Absolut and relative key_paths:

48

Chapter 3. itertree package

itertree Documentation, Release 0.8.2

If the first item is the separator (default: °/’) the find search is like an absolute path and we start at
the root of the iTree. For compatibility reasons with find_all we accept a leading “./” (or to be exact:
“.Y%os”#str_path_separator) as absolute path indicator. If the first item is different, the key_path is relative
and we start from the actual item and search the children and sub-children.

Single string key_path: If the user searches for string type tags he can use a string with a separator (default:
‘/’) in between the tags (Those key_paths will be implicit translated in a list). An index separator (default
= ‘#’) in between the tag and the index can also be used in this case. If the argument is already a list the
single keys will not be parsed regarding the str_path_separator.

Note: If iTree contains tags with characters that used for separators or the all match ‘*’ character the find()
result might contain that tagged item instead of the expected separated or wildcard match.

Note: Quickest find operations can be performed by giving a list containing index integers or Tagldx
objects

The parameters in detail:
Parameters

* key_path — single key or list of keys identification path for the item/items to be searched.
Possible keys: integer - behaves like normal __getitem__ () -> itree_item[key] Tagldx- be-
haves like normal __getitem__() -> itree_item[key] iTreeTagSlice - select a tag sliced group
of sub-elements iTMatch - search pattern can be used too, but keep in mind it must deliver
aunique result! Slice - a slice of indexes (like a special index list) string - will be parsed by
the separators, special string ‘*” is as interpreted as any match iterable list/tuple/deque,...

run over single items

o item_filter —filters the item content regarding NORMAL, TEMPORARY and LINKED
flag or a given filtering method

¢ default_return - object will be return in case of no match (default = None)

e str_path_separator —separator character in case of strings for the search levels (default:
‘4/7’)
* str_index_separator — separator character for given tag indexes (default: “#”)

Returns
iTree single item

index (item, item_filter=None)

The index method allows to search for the index of the item in a parent object This is especially useful if
you must use a item_filter. The delivered index is delivered relative to the given item filter!

For the item index of the item in the unfiltered tree (ALL) it’s recommended to use the idx property instead:
(parent.index(item,ALL) == item.idx)

Parameters
e item - item index should be delivered for
e item_filter — filter integer; method can not handle filter methods yet!

Returns
index integer of the item relative to the given filter

3.3. The main itertree class 49

itertree Documentation, Release 0.8.2

load_links (force=False, delete_invalid_items=False)

Runs ove all children and sub children in case a ITreeLink object is found the linked items are load in
Parameters
¢ force - True - linked items will be reloaded even that they are already loaded

¢ delete_invalid_items — In case a iTreeLink refers to an invalid item (internal excep-
tion) the related iTreeLink object will be deleted from teh tree

loads (data_str, check_hash=True, load_links=True)

create an iTree object by loading from a string

If not overloaded or reinitialized the iTree Standard Serializer will be used. In this case we expect a matching
JSON representation.

Parameters
* data_str — source string that contains the iTree information

» check_hash — True the hash of the file will be checked and the loading will be stopped if
it doesn’t match False - do not check the iTree hash

¢ load_links — True - linked iTree objects will be loaded

Returns
iTree object loaded from file

load (file_path, check_hash=True, load_links=True)
create an iTree object by loading from a file

If not overloaded or reinitialized the iTree Standard Serializer will be used. In this case we expect a matching
JSON representation.

Parameters
« file_path — file path to the file that contains the iTree information

» check_hash — True the hash of the file will be checked and the loading will be stopped if
it doesn’t match False - do not check the iTree hash

¢ load_links — True - linked iTree objects will be loaded

Returns
iTree object loaded from file

dumps (calc_hash=True)

serializes the iTree object to JSON (default serializer)

Parameters
calc_hash — Tell if the hash should be calculated and stored in the header of string

Returns
serialized string (JSON in case of default serializer)

dump (zarget_path, pack=True, calc_hash=True, overwrite=False)

serializes the iTree object to JSON (default serializer) and store it in a file
Parameters
* target_path — target path of the file where the iTree should be stored in
» pack — True - data will be packed via gzip before storage

¢ calc_hash — True - create the hash information of iTree and store it in the header

50

Chapter 3. itertree package

itertree Documentation, Release 0.8.2

* overwrite — True - overwrite an existing file

Returns
True if file is stored successful

renders (item_filter=None)

render the iTree into a string

Parameters
item_filter - the items can be filtered by giving a filter constants or giving a filter method
or iTFilter object

Returns
Tree representation as string

render (item_filter=None)

print the rendered the iTree string to the terminal

Parameters
item_filter - the items can be filtered by giving a filter constants or giving a filter method
or iTFilter object

class itertree.itree_main.iTreeReadOnly (tag, data=None, subtree=None, freeze_struct_only=False)

Bases: iTree

This iTree object is read only the initial parameters given cannot be changed the object remains static in the tree
and can only be changed when deleted and replaced

insert (*args, **kwargs)

Except
PermissionError not possible on iTreeReadOnly objects

append (*args, **kwargs)

Except
PermissionError not possible on iTreeReadOnly objects

appendleft (*args, **kwargs)

Except
PermissionError not possible on iTreeReadOnly objects

extend (*args, **kwargs)

Except
PermissionError not possible on iTreeReadOnly objects

extendleft (*args, **kwargs)

Except
PermissionError not possible on iTreeReadOnly objects

rotate(*args, **kwargs)

Except
PermissionError not possible on iTreeReadOnly objects

reverse (*args, **kwargs)

Except
PermissionError not possible on iTreeReadOnly objects

3.3. The main itertree class 51

itertree Documentation, Release 0.8.2

pop (*args, **kwargs)
Except
PermissionError not possible on iTreeReadOnly objects

popleft (*args, **kwargs)

Except
PermissionError not possible on iTreeReadOnly objects

remove (*args, **kwargs)

Except
PermissionError not possible on iTreeReadOnly objects

clear()

Except
PermissionError not possible on iTreeReadOnly objects
class itertree.itree_main.iTreeTemporary (tag, data=None, subtree=None)
Bases: iTree

This is a temporary item that will not be considered if the iTree is saved into a file.

class itertree.itree_main.iTreeLink(tag, data=None, subtree=None, link_file_path=None,
link_key_path=None, load_links=True)
Bases: iTree

This class is used to define linked subtrees in a iTree object. The target source can be a subtree in another iTree
related file (external links) or internal links to a subtree of the already loaded subtree.

Linking has some functional limitations so is it not allowed to link to already linked objects (we must protect
iTree from circular definitions).

The iTreeLink objects supports local items which can be added additional to the linked items. Furthermore there
is also a mechanism so that local items can overlay the linked items in the tree. This is done by localizing the
linked items with the make_child_local() or make_self_local() method. Afterwards the item can be manipulated
as a normal iTree object. Only exception is that after deleting such a overlaying item the linked item will come
back into the iTree.

rotate(*args, **kwargs)

Except
PermissionError not possible on iTreeReadOnly objects

reverse (*args, **kwargs)

Except
PermissionError not possible on iTreeReadOnly objects

append (item)
append of items is allowed (items are appended as locals :param item: item to be appended :return:

extend (items)

extend of items is allowed, items are appended as locals :param items: items to be appended (iterator)
:return: None

extendleft (item)

Except
PermissionError not possible on iTreeReadOnly objects

52 Chapter 3. itertree package

itertree Documentation, Release 0.8.2

appendleft (item)

Except
PermissionError not possible on iTreeReadOnly objects

insert (insert_key, item)

Except
PermissionError not possible on iTreeReadOnly objects

pop (key)
pop the object out of the tree (only possible on local objects)

Except
In case a linked item is selected an PermissionError is raised

Parameters
key — identification key for the child that should be popped out

Returns
popped out item (parent set to None)

popleft()
pop the first child out of the tree (only possible on local object)

Except
In case a linked item is selected an PermissionError is raised

Returns
popped first item (parent set to None)

remove (item)

remove the given child item out of the tree (only possible on local object)

Except
In case a linked item is selected an PermissionError is raised

Parameters
item — item to be removed from the iTree

Returns
removed item (parent set to None)

rename (ifem_tag)

Except
PermissionError not possible on iTreeReadOnly objects

property is_link_root
Is this item the highest level linked element?

Returns
True/False

property link_ root

delivers the highest level element that is linked in case item is not linked it delivers it self

Returns
highest level linked item found in the parents

. The main itertree class 53

itertree Documentation, Release 0.8.2

property is_link_loaded

For linked iTree objects we deliver here the state of loading the links

Returns
True/False

make_self_local ()

make the current linked object a local object This is only possible if the parent parent is a normal iTree object
-> only the first level children in a linked iTree can be made local The operation raises an SyntaxError in
case it is used on a deeper level of the linked tree

Returns
None

make_child_local (key)

make the item related to the given key a local object This is only possible if the parent of self is a normal
iTree object -> only the first level children in a linked iTree can be made local The operation raises an
SyntaxError in case it is used on a deeper level of the linked tree

Parameters
key — identification key for the child item that should be converted in a local item

Returns
None

iter_locals(add_placeholders=False)

iterator that iterates only over the local elements

Parameters

add_placeholders - If this flag is set the (normally ignored) placeholder items are included
in the iteration

Returns
iterator over local items

get_last_local_idx(tag)

helper function which searches for local items in the tag family and delivers the last index of a local item
found in the family. If no local item is found it delivers None.

iTreePlaceHolder items ignored in this operation!

Parameters
tag - tag to identify the family to be searched in

Returns
last local item idx in tag family or None (no local item found)

load_links (force=False, delete_invalid_items=False, _items=None)
load all linked items

Parameters

» force — False (default) - load only if not already loaded True - load even if already loaded
(update)

¢ delete_invalid_items — False (default) - in case of invalid items we will raise an ex-
ception! True - invalid items will be removed from parent no exception raised

¢ _items - internal list parameter used for recursive calls of the function
Returns

¢ True - success

54

Chapter 3. itertree package

itertree Documentation, Release 0.8.2

¢ False - load failed

clear (local_only=False)
We clear the object

Parameters
local_only -

* True - clear only the local items

* False - clear whole object (The object is reset to the no links loaded state and locals
are deleted)

Returns

equal (other, check_parent=False, check_coupled=False, check_link=False)

compares if the data content of another item matches with this item
Parameters
* other - other iTree
¢ check_parent — check the parent object too? (Default False)
¢ check_coupled - check the couple object too? (Default False)
¢ check_link — check the internal link variable too? (Default False)

Returns
boolean match result (True match/False no match)
class itertree.itree_main.iTreePlaceHolder (tag)
Bases: iTreeReadOnly

place holder item that helps to keep items name in the overloading mechanism

3.4 itertree data classes

This code is taken from the itertree package: https://pypi.org/project/itertree/ GIT Home: https://github.com/BR1py/
itertree The documentation can be found here: https://itertree.readthedocs.io/en/latest/index.html

The code is published under MIT license:
The MIT License (MIT) Copyright © 2022 <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

For more information see: https://en.wikipedia.org/wiki/MIT_License

3.4. itertree data classes 55

https://pypi.org/project/itertree/
https://github.com/BR1py/itertree
https://github.com/BR1py/itertree
https://itertree.readthedocs.io/en/latest/index.html
https://en.wikipedia.org/wiki/MIT_License

itertree Documentation, Release 0.8.2

This part of code contains the helper functions related to the iTree data attribute

exception itertree.itree_data.iTDataValueError

Bases: ValueError

Exception to be raised in case a validator finds a non matching value related to the iDataModel

exception itertree.itree_data.iTDataTypeError

Bases: ValueError

Exception to be raised in case a validator finds a non matching value type related to the iDataModel

class itertree.itree_data.iTDataModel (value=('__iTree_ NOVALUE__'))

Bases: ABC

The default iTree data model class This the interface definition for specific data model classes that might be
created using this superclass

The data model checks the given value for a specific data item. So that we can ensure that the given value matches
to the expectations. We can check for types, shapes (length), limits, or matching patterns.

Besides the check we can also define a default formatter for the value that is used when it is translated into a
string.

(see examples/itree_data_examples.py)
property is_empty
tells if the iTreeDataModel is empty or contains a value :return:
property is_iTDataModel
get()
the stored value :return: object stored in value

set (value, _it_data_model_identifier=None)

put a specific value into the data model

Except
raises an iTreeValidationError in case a not matching object is given

Parameters
¢ value - value object to be placed in the data model

e _it_data_model_identifier - internal parameter used for identification of the set
method in special cases, no functional impact
property value

the stored value :return: object stored in value
clear (_it_data_model_identifier=None)
clears (deletes) the current value content and sets the state to “empty”

Parameters
_it_data_model_identifier —internal parameter used for identification of the set method
in special cases, no functional impact

Returns
returns the value object that was stored in the iTreeDataModel

56

Chapter 3. itertree package

itertree Documentation, Release 0.8.2

abstract validator (value)
This method should check the given value.

It should raise an iDataValueError Exception with a failure explanation in case the value is not matching to
the iDataModel.

..warning:: The validator in an explicit iDataModel class must always return the value itself and it

must raise
the iDataValueError in case of a no matching value. It should also call the super().validator() method

or at least consider that _ NOVALUE___ is a no matching value.

Except
iDataValueError in case value is not matching

Parameters
value - to be checked against the model

Returns
value (which might be casted)

abstract formatter (value=None)
The formatter function allows us to create a specific string representation

Especially in case of numerical values this is interesting. You can define here that an integer should be
represented always as hex, bin, ... or for floats you can give digits.

The formatter can be created by using the classical format options of string but for enumerations we can
put here also a table, etc.

Returns
string representing the value
class itertree.itree_data.iTDataModelAny (value=('__iTree_ NOVALUE__')))
Bases: iTDataModel

Example iDataModel class that accepts any kind of value
validator (value)
This method should check the given value.

It should raise an iDataValueError Exception with a failure explanation in case the value is not matching to
the iDataModel.

..warning:: The validator in an explicit iDataModel class must always return the value itself and it

must raise
the iDataValueError in case of a no matching value. It should also call the super().validator() method

or at least consider that __ NOVALUE__ is a no matching value.
Except
iDataValueError in case value is not matching

Parameters
value - to be checked against the model

Returns
value (which might be casted)

3.4. itertree data classes 57

itertree Documentation, Release 0.8.2

formatter (value=None)

The formatter function allows us to create a specific string representation

Especially in case of numerical values this is interesting. You can define here that an integer should be
represented always as hex, bin, ... or for floats you can give digits.

The formatter can be created by using the classical format options of string but for enumerations we can
put here also a table, etc.

Returns
string representing the value

class itertree.itree_data.iTData(seq=None, **kwargs)

Bases: dict
Standard itertree Data management object might be overloaded or changed by the user

GET_LOOK_UP_METHOD = {0: <function iTData.<lambda>>, 1: <function
iTData.<lambda>>, 2: <function iTData.<lambda>>}

update (E=None, **F)

function update of multiple items if one item is invalid the whole update will be skipped and an iDataVal-
ueError exception will thrown!

In case the replace_model flag is set the model will be exchanged.
Parameters taken from builtin dict:

Update D from dict/iterable E and F. If E is present and has a .keys() method, then does: If E is present and
lacks a .keys() method, then does: In either case, this is followed by:

Except
raises iDataValueError exception if a value in the given object is not matching to the data-
model. The iData object will not be updated in this case.

Parameters
« E—
— with .keys() method: for k in E: D[k] = E[k]
— without .keys() method: fork, vin E: D[k] =v
e **F _ we run: for k in F: D[k] = F[K]
e replace_models -
— True - Will replace the whole key related value (also iTDataModels are replaced)

— False (default) - All values are replaced in case of iTDataModel object the internal

value will
be replaced

copy O
create a new object with same items

Returns
new object copied from self

clear() — None. Remove all items from D.

Chapter 3. itertree package

itertree Documentation, Release 0.8.2

pop (key=('__iTree_ NOKEY__",), default=("__iTree_NOKEY__",), value_only=True)

delete a stored value

Except
will case KeyError if key is not found and default is not set

Parameters
» key — key where the item should be popped out

* value_only — True - only value will be deleted model will be kept in iTreeData False
- whole model will be popped out

Default
define the value given back in case key is not found else KeyError will be raised

Returns
deleted item or default

get(key=("__iTree_NOKEY
get a specific data item by key

"), default=None, return_type=0)

Parameters
» key — key of the data item (if not given _ NOKEY__ is used)
¢ default — default value that will be delivered in case of no match

e _return_type — We can deliver different returns * VALUE - value object * FULL -
iTreeDataModel (only if used else same as VALUE) * STR - formatted string repre-
sentation of the data value

Returns
requested value

fromkeys (*args, **kwargs)
create a new iData object based on given keys and optional value
* real signature unknown
delete_item(key, value_only=True)
delete a item by key

Except
KeyError is raised in case item key is unknown

Parameters
¢ key — key of the data item (if not given _ NOKEY___ is used!
e value_only —

— True - (default) in case of iDataModel items we delete only the internal value
not the model itself

— False - we delete the value independent from the type (also iDataModel objects)

Returns
deleted value

model_values()
iterator that takes in case of iDataModel values the value out of the model, in case of non iDataModel
values the value is given directly as it is

. itertree data classes 59

itertree Documentation, Release 0.8.2

Returns
iterator

model_items()

iterator that takes in case of iDataModel values the value out of the model, in case of non iDataModel
values the value is given directly as it is

Returns
iterator

property is_empty
used for identification of this class :return: True

property is_no_key_only

used for identification of this class :return: True
property is_iTData

is_key_empty (key=("__iTree_NOKEY__'))

Function delivers a key empty state (it delivers True in case key is absent or value is _ NOVALUE__
:param key: key to be check (delaultis _ NOKEY__ :return: True/False

deepcopy O
create a deep copy of this object

also all internal items will be copied!

Returns
new object deep copied from self

class itertree.itree_data.iTDataReadOnly (seq=None, **kwargs)
Bases: iTData

Standard itertree Data management object might be overloaded or changed by the user

pop (*arg, **kwargs)
delete a stored value

Except
will case KeyError if key is not found and default is not set

Parameters
* key — key where the item should be popped out

e value_only — True - only value will be deleted model will be kept in iTreeData False
- whole model will be popped out

Default
define the value given back in case key is not found else KeyError will be raised

Returns
deleted item or default

update(*arg, **kwargs)

function update of multiple items if one item is invalid the whole update will be skipped and an iDataVal-
ueError exception will thrown!

In case the replace_model flag is set the model will be exchanged.

Parameters taken from builtin dict:

60 Chapter 3. itertree package

itertree Documentation, Release 0.8.2

Update D from dict/iterable E and F. If E is present and has a .keys() method, then does: If E is present
and lacks a .keys() method, then does: In either case, this is followed by:

Except
raises iDataValueError exception if a value in the given object is not matching to the data-
model. The iData object will not be updated in this case.

Parameters
« E—
— with keys() method: for k in E: D[k] = E[k]
— without .keys() method: for k, vin E: D[k] =v
e **F _ we run: for k in F: D[k] = F[k]
e replace_models —
— True - Will replace the whole key related value (also iTDataModels are replaced)

— False (default) - All values are replaced in case of iTDataModel object the

internal value will
be replaced

clear() — None. Remove all items from D.
delete_item(key, value_only=True)
delete a item by key

Except
KeyError is raised in case item key is unknown

Parameters
* key — key of the data item (if not given _ NOKEY__ is used!
e value_only —

— True - (default) in case of iDataModel items we delete only the internal value
not the model itself

— False - we delete the value independent from the type (also iDataModel objects)

Returns
deleted value

3.5 itertree filter classes

This code is taken from the itertree package: https://pypi.org/project/itertree/ GIT Home: https://github.com/BR1py/
itertree The documentation can be found here: https://itertree.readthedocs.io/en/latest/index.html

The code is published under MIT license:
The MIT License (MIT) Copyright © 2022 <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

3.5. itertree filter classes 61

https://pypi.org/project/itertree/
https://github.com/BR1py/itertree
https://github.com/BR1py/itertree
https://itertree.readthedocs.io/en/latest/index.html

itertree Documentation, Release 0.8.2

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-

WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

For more information see: https://en.wikipedia.org/wiki/MIT_License

This part of code contains the helper functions related to the iTree data attribute

exception itertree.itree_data.iTDataValueError

Bases: ValueError

Exception to be raised in case a validator finds a non matching value related to the iDataModel

exception itertree.itree_data.iTDataTypeError

class itertree.itree_data.iTDataModel (value=('__iTree_ NOVALUE

Bases: ValueError
Exception to be raised in case a validator finds a non matching value type related to the iDataModel

)]

Bases: ABC

The default iTree data model class This the interface definition for specific data model classes that might be

created using this superclass

The data model checks the given value for a specific data item. So that we can ensure that the given value matches

to the expectations. We can check for types, shapes (length), limits, or matching patterns.

Besides the check we can also define a default formatter for the value that is used when it is translated into a

string.
(see examples/itree_data_examples.py)
property is_empty
tells if the iTreeDataModel is empty or contains a value :return:
property is_iTDataModel
get()
the stored value :return: object stored in value

set (value, _it_data_model_identifier=None)

put a specific value into the data model

Except
raises an iTreeValidationError in case a not matching object is given

Parameters
* value - value object to be placed in the data model

e _it_data_model_identifier —internal parameter used for identification of the set
method in special cases, no functional impact

property value
the stored value :return: object stored in value

clear (_it_data_model_identifier=None)
clears (deletes) the current value content and sets the state to “empty”

62

Chapter 3. itertree package

https://en.wikipedia.org/wiki/MIT_License

itertree Documentation, Release 0.8.2

Parameters
_it_data_model_identifier - internal parameter used for identification of the set
method in special cases, no functional impact

Returns
returns the value object that was stored in the iTreeDataModel
abstract validator(value)
This method should check the given value.

It should raise an iDataValueError Exception with a failure explanation in case the value is not matching
to the iDataModel.

..warning:: The validator in an explicit iDataModel class must always return the value itself and it

must raise
the iDataValueError in case of a no matching value. It should also call the super().validator() method

or at least consider that __ NOVALUE___ is a no matching value.

Except
iDataValueError in case value is not matching

Parameters
value - to be checked against the model

Returns
value (which might be casted)

abstract formatter (value=None)
The formatter function allows us to create a specific string representation

Especially in case of numerical values this is interesting. You can define here that an integer should be
represented always as hex, bin, ... or for floats you can give digits.

The formatter can be created by using the classical format options of string but for enumerations we can
put here also a table, etc.

Returns
string representing the value
class itertree.itree_data.iTDataModelAny (value=('"__iTree_ NOVALUE__')))
Bases: iTDataModel

Example iDataModel class that accepts any kind of value
validator (value)
This method should check the given value.

It should raise an iDataValueError Exception with a failure explanation in case the value is not matching
to the iDataModel.

..warning:: The validator in an explicit iDataModel class must always return the value itself and it

must raise
the iDataValueError in case of a no matching value. It should also call the super().validator() method

or at least consider that __ NOVALUE__ is a no matching value.
Except
iDataValueError in case value is not matching

Parameters
value - to be checked against the model

3.5. itertree filter classes 63

itertree Documentation, Release 0.8.2

Returns
value (which might be casted)

formatter (value=None)
The formatter function allows us to create a specific string representation

Especially in case of numerical values this is interesting. You can define here that an integer should be
represented always as hex, bin, ... or for floats you can give digits.

The formatter can be created by using the classical format options of string but for enumerations we can
put here also a table, etc.

Returns
string representing the value

class itertree.itree_data.iTData(seqg=None, **kwargs)
Bases: dict
Standard itertree Data management object might be overloaded or changed by the user
GET_LOOK_UP_METHOD = {0: <function iTData.<lambda>>, 1: <function
iTData.<lambda>>, 2: <function iTData.<lambda>>}

update (E=None, **F)

function update of multiple items if one item is invalid the whole update will be skipped and an iDataVal-
ueError exception will thrown!

In case the replace_model flag is set the model will be exchanged.
Parameters taken from builtin dict:

Update D from dict/iterable E and F. If E is present and has a .keys() method, then does: If E is present
and lacks a .keys() method, then does: In either case, this is followed by:

Except
raises iDataValueError exception if a value in the given object is not matching to the data-
model. The iData object will not be updated in this case.

Parameters
« E—
— with .keys() method: for k in E: D[k] = E[k]
— without .keys() method: for k, vin E: D[k] =v
e **F _ we run: for k in F: D[k] = F[k]
e replace_models —
— True - Will replace the whole key related value (also iTDataModels are replaced)

— False (default) - All values are replaced in case of iTDataModel object the

internal value will
be replaced

copy O
create a new object with same items

Returns
new object copied from self

clear() — None. Remove all items from D.

64 Chapter 3. itertree package

itertree Documentation, Release 0.8.2

pop (key=('__iTree_ NOKEY__",), default=("__iTree_NOKEY__",), value_only=True)

delete a stored value

Except
will case KeyError if key is not found and default is not set

Parameters
» key — key where the item should be popped out

* value_only — True - only value will be deleted model will be kept in iTreeData False
- whole model will be popped out

Default
define the value given back in case key is not found else KeyError will be raised

Returns
deleted item or default

get(key=("__iTree_NOKEY
get a specific data item by key

"), default=None, return_type=0)

Parameters
» key — key of the data item (if not given _ NOKEY__ is used)
¢ default — default value that will be delivered in case of no match

e _return_type — We can deliver different returns * VALUE - value object * FULL -
iTreeDataModel (only if used else same as VALUE) * STR - formatted string repre-
sentation of the data value

Returns
requested value

fromkeys (*args, **kwargs)
create a new iData object based on given keys and optional value
* real signature unknown
delete_item(key, value_only=True)
delete a item by key

Except
KeyError is raised in case item key is unknown

Parameters
¢ key — key of the data item (if not given _ NOKEY___ is used!
e value_only —

— True - (default) in case of iDataModel items we delete only the internal value
not the model itself

— False - we delete the value independent from the type (also iDataModel objects)

Returns
deleted value

model_values()
iterator that takes in case of iDataModel values the value out of the model, in case of non iDataModel
values the value is given directly as it is

. itertree filter classes 65

itertree Documentation, Release 0.8.2

Returns
iterator

model_items()

iterator that takes in case of iDataModel values the value out of the model, in case of non iDataModel
values the value is given directly as it is

Returns
iterator

property is_empty
used for identification of this class :return: True

property is_no_key_only

used for identification of this class :return: True
property is_iTData

is_key_empty (key=("__iTree_NOKEY__'))

Function delivers a key empty state (it delivers True in case key is absent or value is _ NOVALUE__
:param key: key to be check (delaultis _ NOKEY__ :return: True/False

deepcopy O
create a deep copy of this object

also all internal items will be copied!

Returns
new object deep copied from self

class itertree.itree_data.iTDataReadOnly (seq=None, **kwargs)
Bases: iTData

Standard itertree Data management object might be overloaded or changed by the user

pop (*arg, **kwargs)
delete a stored value

Except
will case KeyError if key is not found and default is not set

Parameters
* key — key where the item should be popped out

e value_only — True - only value will be deleted model will be kept in iTreeData False
- whole model will be popped out

Default
define the value given back in case key is not found else KeyError will be raised

Returns
deleted item or default

update(*arg, **kwargs)

function update of multiple items if one item is invalid the whole update will be skipped and an iDataVal-
ueError exception will thrown!

In case the replace_model flag is set the model will be exchanged.

Parameters taken from builtin dict:

66 Chapter 3. itertree package

itertree Documentation, Release 0.8.2

Update D from dict/iterable E and F. If E is present and has a .keys() method, then does: If E is present
and lacks a .keys() method, then does: In either case, this is followed by:

Except
raises iDataValueError exception if a value in the given object is not matching to the data-
model. The iData object will not be updated in this case.

Parameters
« E—
— with keys() method: for k in E: D[k] = E[k]
— without .keys() method: for k, vin E: D[k] =v
e **F _ we run: for k in F: D[k] = F[k]
e replace_models —
— True - Will replace the whole key related value (also iTDataModels are replaced)

— False (default) - All values are replaced in case of iTDataModel object the

internal value will
be replaced

clear() — None. Remove all items from D.
delete_item(key, value_only=True)
delete a item by key

Except
KeyError is raised in case item key is unknown

Parameters
* key — key of the data item (if not given _ NOKEY__ is used!
e value_only —

— True - (default) in case of iDataModel items we delete only the internal value
not the model itself

— False - we delete the value independent from the type (also iDataModel objects)

Returns
deleted value

3.6 itertree serializing

This code is taken from the itertree package: https://pypi.org/project/itertree/ GIT Home: https://github.com/BR1py/
itertree The documentation can be found here: https://itertree.readthedocs.io/en/latest/index.html

The code is published under MIT license:
The MIT License (MIT) Copyright © 2022 <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

3.6. itertree serializing 67

https://pypi.org/project/itertree/
https://github.com/BR1py/itertree
https://github.com/BR1py/itertree
https://itertree.readthedocs.io/en/latest/index.html

itertree Documentation, Release 0.8.2

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

For more information see: https://en.wikipedia.org/wiki/MIT_License
This part of code contains the standard iTree serializers (JSON and rendering)

class itertree.itree_serialize.iTStdObjSerializer
Bases: object

This class converts objects to raw objects (that can be converted by standard JSON serializer) and back conversion
is also included

TREE = "iT'
DATA = 'DT'
LINK = 'LK'
TAG = 'TG'
IDX = 'IDX'

DATA_MODELL = 'DM'
DTYPE = 'TP'
DATA_CONTAINER = 'DC'

ITREE_ITEMS_DECODE = {'iT': <class 'itertree.itree_main.iTree'>, 'iTI': <class
'itertree.itree_helpers.TagIdx'>, "iTPH': <class
'itertree.itree_main.iTreePlaceHolder'>, 'iTRO': <class
'itertree.itree_main.iTreeReadOnly'>, 'iTl': <class
'itertree.itree_main.iTreeLink'>}

ITREE_ITEMS_ENCODE = {<class 'itertree.itree_main.iTree'>: 'iT', <class

'itertree.itree_main.iTreeReadOnly'>: 'iTRO', <class
'itertree.itree_main.iTreeLink'>: 'iTl', <class
'itertree.itree_main.iTreePlaceHolder'>: 'iTPH', <class

'itertree.itree_helpers.TagIdx'>: 'iTI'}

OTHER_ITEMS_DECODE = {'D': <class 'itertree.itree_data.iTData'>, 'DR': <class
'itertree.itree_data.iTDataReadOnly'>, 'OD': <class 'collections.OrderedDict'>, 'd':
<class 'dict'>}

OTHER_ITEMS_ENCODE = {<class 'dict'>: 'd', <class 'itertree.itree_data.iTData'>:
'D', <class 'itertree.itree_data.iTDataReadOnly'>: 'DR', <class
'collections.OrderedDict'>: 'OD'}

encode (o)
encode the given object to a list or dict (unordered objects) :param o: object :return: list

decode (raw_o)

decode the given raw_object back to the original object :param raw_o: raw_object (dict or list) :param
load_links: load the links of the linked iTree objects :return: constructed object

68 Chapter 3. itertree package

https://en.wikipedia.org/wiki/MIT_License

itertree Documentation, Release 0.8.2

class itertree.itree_serialize.iTStdJSONSerializer (obj_serializer=None)

Bases: object

This is the standard serializer for DataTree which translates the structure into the JSON format. Users might
implement there own serializers using the interface methods defined in this serializer

dumps2 (o, add_header=True, calc_hash=True)

new dump not yet working still in development! should be iterative and only one iteration over all items
should be done (not two like in the current solution) :param o: :param add_header: :param calc_hash:
return:

dumps (o, add_header=True, calc_hash=True)

In JSON the iTree object is represented in the following form Item-> dict with all properties (Special keys
used) Tree structure is stored in list

Parameters
* o —iTree object to be serialized

¢ add_header — True - the header information will be added (containing Version info
and hash) False - no header pure data

¢ calc_hash —True - A shal hash is calculated over the data section of iTree and added
in the header False - no hash will be calculated

Returns
string containing the serialized data

dump (o, file_path, pack=True, calc_hash=True, overwrite=False)
Serialize iTree object into a file

Parameters
* 0 — iTree object to be serialized
« file_path — target file path where to store the data in
e pack — True - gzip the data, False - do not zip

* overwrite — True - an existing fie will be overwritten False (default) - in case the file
exists an FileExistsError Exception will be raised

¢ calc_hash - True - A shal hash is calculated over the data section of iTree and added
in the header False - no hash will be calculated

Returns
None

loads (source_str, check_hash=True, load_links=True, _source=None)

create an iTree object by loading from a string.
Parameters
* source_str — source string that contains the iTree information

¢ check_hash — True the hash of the file will be checked and the loading will be stopped
if it doesn’t match False - do not check the iTree hash

¢ load_links — True - linked iTree objects will be loaded
e _source — Path of a loaded source file (for internal use)

Returns
iTree object loaded from file

3.6. itertree serializing 69

itertree Documentation, Release 0.8.2

load (file_path, check_hash=True, load_links=True)

create an iTree object by loading from a file
Parameters
» file_path — file path to the file that contains the iTree information

¢ check_hash — True the hash of the file will be checked and the loading will be stopped
if it doesn’t match False - do not check the iTree hash

¢ load_links — True - linked iTree objects will be loaded

Returns
iTree object loaded from file

class itertree.itree_serialize.iTStdRenderer

Bases: object
Standard renderer fr the iTree object for creating a very simple pretty print output

render2 (itree_object, item_filter=None, _level=0)
prints a pretty output of the iTree object

Parameters
e itree_object - iTree object to be converted
e item_filter - item filter method or filter-constant to filter specific items out
¢ _level - internal parameter for recursive calls (do not use)

Returns
string containing the pretty print aoutput

rendersz2 (itree_object, item_filter=None, _level=0)
creates a pretty print string from iTree object This is the recursive version which might be a bit quicker

Parameters
* itree_object - iTree object to be converted
e item_filter - item filter method or filter-constant to filter specific items out
¢ _level - internal parameter for recursive calls (do not use)

Returns
string containing the pretty print aoutput

render (itree_object, item_filter=None)
creates a pretty print from iTree object and prints it stdout

Note:: Filtered renderings contains always the root object and the added children might have
confusing indentation levels because the parent elements might be filtered out
Parameters
e itree_object - iTree object to be converted

e item_filter - item filter method or filter-constant to filter specific items out Note::
The root of the object is not filtered and always in the outputs first line

Returns

70 Chapter 3. itertree package

itertree Documentation, Release 0.8.2

renders (itree_object, item_filter=None)

creates a pretty print string from iTree object ad returns it in a string

Note:: Filtered renderings contains always the root object and the added children might have
confusing indentation levels because the parent elements might be filtered out

Parameters
e itree_object - iTree object to be converted

e item_filter - item filter method or filter-constant to filter specific items out Note::
The root of the object is not filtered and always in the outputs first line

Returns
string containing the pretty print output

3.7 itertree helper classes

This code is taken from the itertree package: https://pypi.org/project/itertree/ GIT Home: https://github.com/BR 1py/
itertree The documentation can be found here: https://itertree.readthedocs.io/en/latest/index.html

The code is published under MIT license:
The MIT License (MIT) Copyright © 2022 <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

For more information see: https://en.wikipedia.org/wiki/MIT_License
This part of code contains helper classes used in DataTree object

itertree.itree_helpers.accu_iterator (iterable, accu_method, initial_value=(None,))
A method that enables itertools accumulation over a method .. note:: This method is just needed because in
python <3.8 itertools accumulation has no initial parameter! :param iterable: iterable :param accu_method:
accumulation method (will be fet by two parameters cumulated and new item) :return: accumulated iterator
itertree.itree_helpers.is_iterator_empty (iterator)

checks if the given iterator is empty :param iterator: iterator to be checked :return: tuple (True,iterator) - empty
(False, iterator) - item inside

class itertree.itree_helpers.iTInterval (lower_limit="inf", upper_limit="inf', lower_open=True,
upper_open=True, not_in=False, pre_interval=None,
pre_and=False, str_def=None)

Bases: object

3.7. itertree helper classes 71

https://pypi.org/project/itertree/
https://github.com/BR1py/itertree
https://github.com/BR1py/itertree
https://itertree.readthedocs.io/en/latest/index.html
https://en.wikipedia.org/wiki/MIT_License

itertree Documentation, Release 0.8.2

helper class that defines an interval for range definitions in Data Models or Filters
the class contains a check if a given value is in the defined interval or not

The class might be a little bit under estimated in all the itertree functionalities but its a short but very powerful
implementation of an Interval class for python.

The class contains anything you might need in case of a Interval functionality. You can given open/closed interval
definitions including infinite limits. The intervals can be combined to a mathematical set via the pre_interval
parameter. And the check method allows to give other limits as defined. This is especially useful for dynamically
calculated limits.

The interval definition is also possible via a mathematical string like: “(1,2)” or “[10,+inf)”.

If you need a more advanced implementation you might have a look on the intervals/portion python package.

Note: For equal just set upper_limit to None (upper_open, lower_open parameter will be ignored in this case)

INF = 'inf'
property is_equal

check (value, use_limits=None, return_iterator=False)

main check function :param value: value to be check if in interval or not (you might give iterables too!
:param use_limits: You can replace the static limits in the interval with dynamic ones given in the check,
any

nested iterable can be used here (do not use iterators!). None - use static limit
(lower,_limit, upper_limit) - replace limits in highest level interval if lower_limit or

upper_limit is None the static one is used
(((ower_limit_12,upper_limit_12),(lower_limit_I1,upper_limit_11)),(lower_limit_l0,upper_limit_l0))

- use nested tuples to give replacement limits to deeper levels (use None for using static ones)

Returns
True/False or iterator over single value check use any() to get a summary!

math_repr()
mathematical string representation of the interval :return: string

from_str (interval_str)

create the interval from a math representation string .. note:: Give inf for infinity :param interval_str: math
string representation :return:

class itertree.itree_helpers.iTLink(file_path=None, key_path=None, link_item=None)

Bases: object
Definition of a link to an element in another DataTree

property loaded

property is_loaded
property link_item
property file_path

property key_path

72

Chapter 3. itertree package

itertree Documentation, Release 0.8.2

property is_iTLink
property link_tag
property link data
property source_path
set_source_path(path)
set_loaded (tag=None, data=None)
dict_repr(Q
class itertree.itree_helpers.iTMatch(pattern, combine_or=True)

Bases: object

The match object is used to defined match to elements in the DtaTree used in iterations over the DataTree The
defined iMatch object can be used for checks against iTree objects (mainly for checks against the tag and also for
string matches e.g. for finding iTree.data.keys() or .values() in filters.

property is_iTMatch
check (item, item_filter=None)
class itertree.itree_helpers.TagIdx(tag, idx)
Bases: tuple
idx
Alias for field number 1

tag
Alias for field number 0

class itertree.itree_helpers.TagIdxStr(tag_idx_str, tag_separator="#")
Bases: TagIdx

Define a Tagldx by a sting with an index separator (default="#")

Example: “mytag#1” will be translated in the Tagldx(“mytag”,1)

Note: This makes only sense and can only be used if the tag is a string (not for other objects)

Parameters
tag_idx_str - string containing the definition

property is_TagIdxStr
class itertree.itree_helpers.TagIldxBytes(tag_idx_bytes, tag_separator=b'#")
Bases: TagIdxStr
Define a Tagldx by bytes with an index separator (default=b’#’)
Example: b”mytag#1” will be translated in the Tagldx(b”mytag”,1)

Note: This makes only sense and can only be used if the tag is a byte (not for other objects)

3.7. itertree helper classes 73

itertree Documentation, Release 0.8.2

Parameters
tag_idx_bytes — bytes containing the definition

property is_TagIdxBytes
class itertree.itree_helpers.TagMultildx(tag, idxs)
Bases: TagIdx
Define a TagMultildx
Parameters
* tag - item tag (can be any hashable object)

¢ idxs — This parameter can be: list of integer indexes any iterable or iterator containing
index integers

slice object

property is_TagMultiIdx

3.8 Subpackages

74 Chapter 3. itertree package

CHAPTER
FOUR

ITERTREE EXAMPLES PACKAGE

4.1 Usage examples

In the example section you can find two example files itree_usage_example.py and itree_data_examples.py which ex-
plain how itertree package might be used.

In the file itree_usage_example.py a larger iTree is build ans manipulated and it is shown how the items in the tree can
be reached. The example is in our opinion self explaining and we do not any more hints here.

Initree_data_examples.py we focus a bit on possible data models that might be used in iTree. We do not use any external
packages in the examples but we recommend portion package for range definitions and also the Pydantic package might
be a good option to define very powerful data models.

About the data models one can say that the data model can be used with the focus of checking and formatting of the
stored data: * check data type * check value range (give intervals, limits) * do we have an array of the data type and
what is max length * for strings we can use matches or regex checks of values * for formatting think about numerical
values (integer dec/hex/bin representation) or float number of digits to round to * We can also define more abstract
datatypes like keylists or enumerated keys.

In the file you can see some examples of how this data models can be defined and used.

4.1.1 Modules

4.1.2 itertree usage example

itertree.examples.itree_usage_examplel.py

In this script we read in a part of the file system and we create an itertree which contains the some file information.
Afterwards we filter on some conditions like filesize or modification times. Depending on the number of files found in
the folder the first step (iTree creation) might need a short while.

After executing the script the output might look like this:

We read a part of the filesystem ('c:/ProgramData') into an itertree
Number of items read in 15633

The load in tree has a depth of 15

How many files are bigger then 1000000 Bytes?

Number of Matches: 934

How many files are in size 9000 ~ 10000 Bytes?

Number of Matches: 170

How many files are touched (modified) during the last day?

Number of Matches: 297

(continues on next page)

75

itertree Documentation, Release 0.8.2

(continued from previous page)

How many files are touched (modified) during the last minute?
Number of Matches: 2
iTree('root')

L——iTree('SelelectController.log', data=iTData({'ACCESS': True, 'TYPE':
—'FILE', "EXT': 'log', 'CTIME': 1619959866.8760855, 'ATIME': 1620021514.1237395, 'FULL_
—PATH': 'c:/ProgramData\\LANDesk\\Log\\SelfElectController.log', 'MTIME': 1620021514.
1237395, 'SIZE': 21081}))

L——iTree('macompatsvc_VSL9GMPW.log', data=iTData({'ACCESS': True, 'TYPE

—'": "FILE', "EXT': 'log', 'CTIME': 1602947283.061818, 'ATIME': 1620021485.8823195,
- "FULL_PATH': 'c:/ProgramData\\McAfee\\Agent\\logs\\macompatsvc_VSL9GMPW.log', 'MTIME':._
-.1620021485.8823195, 'SIZE': 960698}))

4.1.3 itertree data models example

itertree.examples.itree_data_models.py

During the execution of the module we build an itertree and we fill the iTree objects with the data module and in a
second step with the data values. Some exceptions are generated for non matching values and the formatted string
representation of the data model is printed out. The script delivers the following output:

Run itertree data_model.py example
We build a tree for the following information:

signal_catalog

- signal_category

- signal

Each level in the tree contains several attributes that are stored in the data model
Build iTData structure for signal_catalog:

iTData({'creation_time': TimeModel(), 'name': StringModel (match=None, max_length=20)})
Build iTData structure for signal_category
iTData({'description': StringModel (match=None, max_length=200)})
Build iTData structure for signal
iTData({'type': StringModel (match=None, max_length=20), 'raw_data': ArrayModel (item_
—type=FloatModel (range_interval=iTInterval (lower_limit=-10, upper_limit=10, lower_
—open=False, upper_open=False), digits=2), max_len=None), 'gain': FloatModel (range_
—interval=iTInterval (lower_limit=inf, upper_limit=inf, lower_open=True, upper_
—open=True), digits=4), 'offset': FloatModel(range_interval=iTInterval (lower_limit=inf,._
—upper_limit=inf, lower_open=True, upper_open=True), digits=4), 'io_type':.
—EnumerationModel (enum_iterable_dict={1: 'INPUT', 2: 'OUTPUT'}), 'buffer_size':.
—IntegerModel (range_interval=iTInterval (lower_limit=0, upper_limit=1024, lower_
—.open=False, upper_open=False), representation=2), 'address': IntegerModel (range_
—interval=iTInterval (lower_limit=0, upper_limit=inf, lower_open=False, upper_
—open=False), representation=1)})
Build the tree
Type check example
Enter int as name and catch exception
Exception caught: iDataValueError('Given value of wrong type')
Enter creation time
Creation time value: 1649524264.1243489
Creation time string representation: 2022-04-09 19:11:04.124349
Create a category
Enter a to long description and catch exception

(continues on next page)

76 Chapter 4. itertree examples package

itertree Documentation, Release 0.8.2

(continued from previous page)

Exception caught: iDataValueError('Given value contains to many characters (max_

—length=200)")

Enter a array item out of range

Exception caught: iDataValueError('Given sub_value (index: 8)-> Value: 10.1 not in.

—range: [-10,10]")

raw_data_string ['1.00', '2.60', '3.00', '4.600', '5.00', '6.00', '7.00', '8.00', '9.90']

gain (see number of digits=4!) 1.0230

Enter invalid enumerate number

Exception caught: iDataValueError('Value: 3 not in enumeration definition')

io_type enum string INPUT

address as hex representation 0xff1234

Enter invalid buffer_size in update()

Exception caught: iDataValueError("Item ('buffer_size',-1): Value: -1 not in range: [0,

—10241")

CONSTRUCTED TREE:

iTree('signal_catalog', data=iTData({'creation_time': TimeModel (value= 1649524264.

—1243489), 'name': StringModel(value= 'my signal catalog', match=None, max_length=20)}))
L —iTree('analog signals', data=iTData({'description': StringModel(value= 'Digital.

—»signals (switches and state inputs)', match=None, max_length=200)1}))

L _iTree('power voltage', data=iTData({'type': StringModel(value= 'analog input
— ', match=None, max_length=20), 'raw_data': ArrayModel(value= [1, 2, 3, 4, 5, 6, 7, 8,.
—9.9], item_type=FloatModel (range_interval=iTInterval(lower_limit=-10, upper_limit=10,.
—lower_open=False, upper_open=False), digits=2), max_len=None), 'gain':.

—FloatModel (value= 1.023, range_interval=iTInterval(lower_limit=inf, upper_limit=inf,._
—.lower_open=True, upper_open=True), digits=4), 'offset': FloatModel(value= 0.0183,.
—range_interval=iTInterval (lower_limit=inf, upper_limit=inf, lower_open=True, upper_
—open=True), digits=4), 'io_type': EnumerationModel(value= 1, enum_iterable_dict={1:

- "INPUT', 2: 'OUTPUT'}), 'buffer_size': IntegerModel(value= 256, range_
—interval=iTInterval (lower_limit=0, upper_limit=1024, lower_open=False, upper_
—open=False), representation=2), 'address': IntegerModel(value= 16716340, range_
—interval=iTInterval (lower_limit=0, upper_limit=inf, lower_open=False, upper_
—.open=False), representation=1)}))

L——iTree('power current', data=iTData({'type': 'analog input', 'raw_data': [1,.
2, 3, 4], 'gain': 1, 'offset': 0, 'io_type': 1, 'buffer_size': 100, 'address': 123}))

L _iTree('power control', data=iTData({'type': 'analog output', 'raw_data':.
—ArrayModel (value= [1, 2, 3, 4, 5, 6, 7, 8, 9.9], item_type=FloatModel (range_
—interval=iTInterval (lower_limit=-10, upper_limit=10, lower_open=False, upper_
—.open=False), digits=2), max_len=None), 'gain': 1.0, 'offset': 0, 'io_type': 2, 'buffer_
—.size': IntegerModel(value= 256, range_interval=iTInterval (lower_limit=0, upper_
—1imit=1024, lower_open=False, upper_open=False), representation=2), 'address': 456}))

L _iTree('digital signals', data=iTData({'description': StringModel(value= 'Digital..
—»signals (switches and state inputs)', match=None, max_length=200)}))

L——iTree('power switch', data=iTData({'type': 'digital output', 'raw_data':.
—.ArrayModel (value= [1, 2, 3, 4, 5, 6, 7, 8, 9.9], item_type=FloatModel (range_
—interval=iTInterval (lower_limit=-10, upper_limit=10, lower_open=False, upper_
—open=False), digits=2), max_len=None), 'gain': FloatModel(value= 1.023, range_
—interval=iTInterval (lower_limit=inf, upper_limit=inf, lower_open=True, upper_
—open=True), digits=4), 'offset': FloatModel(value= 0.0183, range_
—interval=iTInterval (lower_limit=inf, upper_limit=inf, lower_open=True, upper_
—open=True), digits=4), 'io_type': 2, 'buffer_size': IntegerModel(value= 256, range_
—interval=iTInterval (lower_limit=0, upper_limit=1024, lower_open=False, upper_
—open=False), representation=2), 'address': 789}))

4.1. Usage examples 77

itertree Documentation, Release 0.8.2

4.1.4 itertree link example

itertree.examples.itree_link_examplel.py
This example file should show the user how links can be used and how the links are stored.

Please compare the output with the code executed:

"iTree’” with linked element but no links loaded:
iTree('root")
L _iTree('A")
L _iTree('B")
L _iTree('B")
L —iTree('Ba')
L _iTree('Bb")
L _iTree('Bb")
L _iTree('Bc")
L—iTreeLink('internal_link', link=iTreeLink(file_path=None, key_path=['/',.
—TagIdx(tag='B', idx=1)]))

"iTree” with linked element with links loaded:
iTree('root')
L _iTree('A")
L _iTree('B")
L _iTree('B")
L _iTree('Ba")
L _iTree('Bb")
L—iTree('Bb")
L—iTree('Bc")
L _iTreeLink('internal_link', link=iTreeLink(file_path=None, key_path=['/',.
—TagIdx(tag='B"', idx=1)]))
L iTreeLink('Ba')
L—iTreeLink('Bb"')
L—iTreeLink('Bb")
L—iTreeLink('Bc')

iTree('root")
L _iTree('A")
L _iTree('B")
L _iTree('B")
L _iTree('Ba")
L_iTree('Bb")
L_iTree('Bb")
L—iTree('Bc")
L—iTree('B_post_append')
L _iTreeLink('internal_link', link=iTreeLink(file_path=None, key_path=['/',.
—TagIdx(tag='B', idx=1)]))
L iTreeLink('Ba')
L—iTreeLink('Bb"')
L—iTreeLink('Bb")
L _iTreeLink('Bc')
"iTree’ with updated linked element but no reload of the links:

iTree('root"')

(continues on next page)

78 Chapter 4. itertree examples package

itertree Documentation, Release 0.8.2

(continued from previous page)

L _iTree('A")
L _iTree('B")
L _iTree('B")
L _iTree('Ba")
L _iTree('Bb")
L _iTree('Bb")
L—iTree('Bc")
L—iTree('B_post_append')
L _iTreeLink('internal_link', link=iTreeLink(file_path=None, key_path=['/',.
—TagIdx(tag='B', idx=1)]))
L iTreeLink('Ba')
L—iTreeLink('Bb"')
L—iTreeLink('Bb")
L _iTreeLink('Bc')

"iTree’” with updated linked element and with links reloaded:
iTree('root"')
L _iTree('A")
L _iTree('B")
L—iTree('B")
L _iTree('Ba")
L_iTree('Bb")
L—iTree('Bb")
L _iTree('Bc')
L _iTree('B_post_append')
L iTreeLink('internal_link', link=iTreeLink(file_path=None, key_path=['/",.
—TagIdx(tag='B', idx=1)]))
L—iTreeLink('Ba')
L—iTreeLink('Bb"')
L _iTreeLink('Bb"')
L iTreeLink('Bc"')
L _iTreeLink('B_post_append')

"iTree’ with linked element and additional local items:
iTree('root')
L—iTree('A")
L _iTree('B")
L _iTree('B")
L—iTree('Ba')
L—iTree('Bb")
L—iTree('Bb")
L _iTree('Bc")
L _iTree('B_post_append')
L—iTreeLink('internal_link', link=iTreeLink(file_path=None, key_path=['/',.
—TagIdx(tag='B', idx=1)1))
L _iTreeLink('Ba')
L —iTreeLink('Bb")
L_iTree('Bb")
L _iTree('sublocal")
L—iTreeLink('Bc')
L _iTreeLink('B_post_append"')
L —iTree('new")

(continues on next page)

4.1. Usage examples 79

itertree Documentation, Release 0.8.2

(continued from previous page)

"iTree’ with linked element and the overloading local item deleted:
iTree('root')
L _iTree('A")
L _iTree('B")
L _iTree('B")
L—iTree('Ba')
L—iTree('Bb")
L—iTree('Bb")
L _iTree('Bc")
L _iTree('B_post_append')
L —iTreeLink('internal_link', link=iTreeLink(file_path=None, key_path=['/',.
—TagIdx(tag='B', idx=1)]1))
L _iTreeLink('Ba')
L —iTreeLink('Bb")
L —iTreeLink('Bb")
L—iTreeLink('Bc')
L—iTreeLink('B_post_append')
L _iTree('new')

"iTree’ load from file with load_links parameter disabled (to make internal structure.
—visible):
-> See the placeholder element that was added to keep the TagIldx of the local item Bb[1]
iTree('root')
L—iTree('A")
L _iTree('B")
L _iTree('B")
L—iTree('Ba')
L—iTree('Bb")
L _iTree('Bb")
L _iTree('Bc")
L _iTree('B_post_append')
L—iTreeLink('internal_link', link=iTreeLink(file_path=None, key_path=['/',.
—TagIdx(tag='B', idx=1)1))
L —iTreePlaceHolder('Bb')
L —iTree('Bb")
L _iTree('sublocal")
L _iTree('new')

"iTree” load from file with load_links() executed:
iTree('root")
L _iTree('A")
L _iTree('B")
L _iTree('B")
L _iTree('Ba")
L _iTree('Bb")
L _—iTree('Bb")
L _iTree('Bc")
L—iTree('B_post_append')
L—iTreeLink('internal_link', link=iTreeLink(file_path=None, key_path=['/',.
—TagIdx(tag='B', idx=1)]1))
L —iTreeLink('Ba')

(continues on next page)

80 Chapter 4. itertree examples package

itertree Documentation, Release 0.8.2

(continued from previous page)

L —iTreeLink('Bb')
L _iTree('Bb")
L _iTree('sublocal')
L iTreeLink('Bc"')
L _iTreeLink('B_post_append')
L _iTree('new')

4.1.5 itertree editor example

This program is using Tkinter to create a GUI to create and manipulate ifertree objects. The program should show
how an ‘iTree’-item can be coupled with an item in a tree structure of the GUI (use the coupled_object functionality of
iTree). THe editor allows diffrent manipulations on the tree structure from renaming and ordering to manipulations of
the data (add some models, etc) and the creation of additional items (i7ree / iTreeLink , iTreeReadOnly). The context
menus are also created via a defintions based on iTree objects. The GUI code example is splittet in an controller and
the GUI itself. This allows better testing of the functionalities if required and brings a lot more advantages. But we
should not dive in the discussions of GUI related architecture here, as long we have here just another example for the
usage of itertree.

Note: Please do not report issues related to the editor on GIT. We know that a lot of corner-cases are not covered

and that the editor functionalities are incomplete. It’s just an example and not an application we provide here.

4.1.6 itertree performance example
There are two performance tests found under examples. They are not created for learning proposes furthermore the user

can see how we have run some performance test against other solutions that targeting in same direction as the itertree
package. For more details have a look on the Comparison of the documentation.

4.1.7 itertree profiler example

The example contains one of the profiling we did to optimize the iTree class for the main operations.

Based on those analysis you can see which operations needs the most calculation time. The output looks like:

Running on itertree version: 0.8.0
5400015 function calls (5300015 primitive calls) in 4.132 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.000 0.000 4,132 4,132 <string>:1(<module>)
700003 0.520 0.000 0.520 0.000 itree_data.py:203(__init__)
400001 0.280 0.000 0.456 0.000 itree_data.py:220(__copy__)
100000 0.180 0.000 0.228 0.000 itree_main.py:1087(insert)
100000 0.130 0.000 0.187 0.000 itree_main.py:1127(append)

1 0.000 0.000 0.897 0.897 itree_main.py:1178(extend)

1 0.000 0.000 0.000 0.000 itree_main.py:1434(iter_children)
500003 0.766 0.000 1.780 0.000 itree_main.py:148(__init__)

(continues on next page)

4.1. Usage examples 81

itertree Documentation, Release 0.8.2

(continued from previous page)

200003/100003 0.463
200000 0.088
100000 0.084

1 0.001
1 0.028
1 0.000
200000 0.760
200000 0.024
1 0.393
1 0.086
1 0.000
200001 0.017
100000 0.009
100000 0.008
400001 0.036

—0x000001F206B4DA60}
100000 0.013

—0x000001F206BBC940}
699998 0.069

—0x000001F206BCICAQ}
100000 0.026

—0x000001F206BC9C10}
100000 0.032

—0x000001F206BCI9EEQ}
499997 0.077
399998 0.040

1 0.000

—objects}

0.000

.000
.000
.001
.028
.000
.000
.000
.393
.086
.000
.000
.000
.000
.000

(=N — I — I — I — R — I — N — A — I — I — I — I —]

.000

.000

.000

.000

.000

.000
.000

1.237

.121
.124
.062
.916
.000
.607
.024
.132
.402
.132
.017
.009
.008
.036

@ hdohOorr R

.013

.069

.026

.032

.077

.040
.000

(=]

0.

.000
.000
.062
.916
.000
.000
.000
.132
.402
.132
.000
.000
.000
.000

oo,

000 itree_main.py:2073(_load_subtree)

itree_main.
itree_main.
itree_main.
itree_main.
itree_main.
itree_main.
itree_main.
itree_profi
itree_profi
{built-in
{built-in
{built-in
{built-in
{function

py:
py:
py:
py:
py:
py:
py:

le
le

method
method
method
method
iTData.

255(__getitem__)
288(__delitem__)
373(C_mul__)

385 (<listcomp>)
409(__iter__)
957(__copy__)

972 (<listcomp>)
41(performance_dt)
51(<listcomp>)
builtins.exec}
builtins.isinstance}
builtins.iter}
builtins.len}

copy at.

.py:
py:

(=]

.000

.000

.000

.000

.000

.000
.000

{function
{function
{function

{function

“iTree

“iTree

“iTree

“iTree

T.__getitem__ at.

" .append at.

" .insert at.

T .pop at.

{method '__contains__"' of 'dict' objects}
{method '__getitem__' of 'dict' objects}
{method 'disable' of '_lsprof.Profiler'.

and for second profiling script:

6934372 function calls in

Ordered by: standard name

3.239 seconds

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 3.239 3.239 <string>:1(<module>)
1050804 0.215 0.000 2.915 0.000 itree_helpers.py:56(accu_iterator)
535806 1.338 0.000 2.520 0.000 itree_main.py:1504(find_all)
525402 0.229 0.000 2.700 0.000 itree_main.py:1688(<lambda>)
535806 0.312 0.000 0.446 0.000 itree_main.py:2133(__extract_first_iter_
—items)
535806 0.212 0.000 0.323 0.000 itree_main.py:2163(__build_find_all_result)
535806 0.290 0.000 0.349 0.000 itree_main.py:255(__getitem__)
1 0.206 0.206 3.239 3.239 itree_profile2.py:77 (performance_it_find_all_
~by_idx)
1 0.000 0.000 3.239 3.239 {built-in method builtins.exec}
535806 0.081 0.000 0.081 0.000 {built-in method builtins.hasattr}
535806 0.052 0.000 0.052 0.000 {built-in method builtins.isinstance}
535806 0.060 0.000 0.060 0.000 {built-in method builtins.iter}
535806 0.053 0.000 0.053 0.000 {built-in method builtins.len}
10404 0.068 0.000 2.937 0.000 {built-in method builtins.next}
(continues on next page)
82 Chapter 4. itertree examples package

itertree Documentation, Release 0.8.2

(continued from previous page)

525402 0.064 0.000
535806 0.059 0.000
—0x0000029A579A2AF0}
102 0.000 0.000
1 0.000 0.000
—objects}

0.000 {built-in method from_iterable}
0.000 {function "iTree .__getitem__ at.

0.000 {method 'append' of 'list' objects}
0.000 {method 'disable' of '_lsprof.Profiler'.

4.1. Usage examples

83

itertree Documentation, Release 0.8.2

84

Chapter 4. itertree examples package

CHAPTER
FIVE

COMPARISON

In this chapter we compare the itertree package with other packages which are targeting in the same direction.

Each package is develop with a specific focus and therefore a comparison is always a bit misleading. Finally the com-
parison remarks you find in this chapter are no not at all a judgement of the other packages. Especially the performance
tests can also be misleading because we may not have utilized the other packages in the right way.

In this chapter we compare iTree also with the standard types like dict and lists. Additionally we have a look on
xml.ElementTree, sorted_dict (from sorted containers) and the anytree package.

In the design paradigms of the itertree package can be summarized by the following topics. They will be highlighted
and compared:

1. We can add any type of tag in the i7ree as long as it is hashable and we can add the same tag multiple times in the
iTree. Some of the comparable package support only string-type tags (like anytree or xml.ElementTree). Other allow
only unique tags like the keys in dicts (using same key will overwrite the already existing tag in this case).

2. In iTree the item access via index and tag (or Tagldx) is possible. As you will see in the performance tests later
many of the other packages are focus on one type of access only and the second type is then much slower (optimized
for key or optimized index access only). It is part of the design paradigm related to the classes (E.g. it’s quite clear that
index access on huge dicts or key access in huge list will be very slow). But even the search mechanisms in specialized
packages are very often really slow (compared to iTree).

3. The access of multiple items via index list is possible my_itree[[1,4,5,6,9]] will deliver the indexed items in an
iterator (The access via index-list is in most packages not supported).

4. As in the introduction already explained the results when running filter queries in i7ree will be delivered very quick
because we delivering always iterators. But this might make the coding from the point of usage sometimes a bit more
complicate because if you need index access to a specific element you must cast the iterator in a list (by list(my_iterator))
or you use or use itertools.is_slice() operation. It’s always recommended to address the target items via the available
iTree methods (find(), find_all() or even iTree[my_identifier]) directly. You can also use the item_filter and matches to
reach your results as good as possible.

5. We can link multiple source files into one iTree object or even create link inside the tree itself, also we can cover
linked items by local items. Most of the packages do not support links and we do not know any other package supporting
item covering (overloading). Even the load and storage into files is most often not supported especially considering
the data object stored in the item must be serialized in this case too. (Users can always create serializers but this can
be sometimes very difficult considering all data-types stored in a tree). iTree delivers out of the box the possibility to
store several data-types into a JSON file (e.g. also numpy arrays if needed).

6. At least the data in the i7ree objects can be combined with a data model that checks that the give data values matching
with the ones expected by the data model. The defined data models allows much more then just a check of the data
type. E.g. one can also define ranges or intervals in which an integer value must fit in. This functionality makes i7ree
objects very attractive for the storage of certain configuration data.

Finally we must also mention that sorting of items is not in focus of this package.

85

itertree Documentation, Release 0.8.2

Under examples you can find the “itree_performance.py” file which contains a short performance test regarding other
comparable packages. The following results are create under Python 3.9 and blist package installed. Please feel free to
adapt the first line regarding the tree size and the number of repetitions when you run your own tests. In case no blist
package is installed you may skip the insert operation of i7ree which is slowed down a lot.

The measured times given are always relative to one operation.

The tests are only performed in case the needed package is available in the local installation if the module is not found
the test is skipped. The user can find some experimental not published packages imported in the code, this should be
ignored.

Running the test on a tree with 5000 items delivers the following result on my PC under python 3.9.

>>>python iter_performance.py

We run for treesizes: 5000 with 4 repetitions

Python: 3.9.2 (tags/v3.9.2:1a79785, Feb 19 2021, 13:44:55) [MSC v.1928 64 bit (AMD64)]
blist package is available and used

itertree version: 0.8.0

A relative values >1 related to "iTree’ means the other object is faster

(relative values <1 means " iTree’ is faster)

Exectime time itertree build: 0.014122499999999996

Exectime time itertree build: with subtree list comprehension: 0.011322650000000004
Exectime time itertree build (with insert): 0.014225149999999992

Exectime time itertree tag access: 0.0018194249999999995

Exectime time itertree tag index access: 0.0037113499999999883

Exectime time itertree tag index tuple access: 0.0025402999999999953

Exectime time itertree index access: 0.0018937750000000003

Exectime time itertree convert iter_all iterator to list: 0.0024619749999999913
Exectime time itertree save to file: 0.018669550000000007

Exectime time itertree load from file: 0.030752224999999994

Loaded "iTree’ is equal: True

-- Standard classes ---------—————mmmmm

Exectime time dict build: 0.0013473249999997883 ~ 10.482x faster as iTree

Exectime time dict key access: 0.0010821000000000858 ~ 1.681x faster as iTree

Exectime time dict index access: 0.1515084499999999 ~ 0.012x faster as iTree

Exectime time list build (via comprehension): 0.0007731250000000411 ~ 14.645x faster as.
—1iTree

Exectime time list build (via append): 0.0010298500000001098 ~ 13.713x faster as iTree
Exectime time list build (via insert): 0.007580025000000212 ~ 1.877x faster as iTree
Exectime time list index access: 0.00014650000000004937 ~ 12.927x faster as iTree
Exectime time list key access: 0.15582805 ~ 0.012x faster as iTree

Exectime time OrderedDict build: 0.0010928749999998821 ~ 12.922x faster as iTree
Exectime time OrderedDict key access: 0.0007975499999999247 ~ 0.002x faster as iTree
Exectime time deque build (append): 0.0009357999999999311 ~ 15.091x faster as iTree
Exectime time deque build (insert): 0.0012067749999999933 ~ 11.788x faster as iTree
Exectime time deque index access: 0.00027527499999990823 ~ 6.880x faster as iTree

-- SortedDict -----—-------mm

Exectime time SortedDict build: 0.03194094999999986 ~ 0.442x faster as iTree

Exectime time SortedDict key access: 0.0011537749999999125 ~ 1.577x faster as iTree
Exectime time SortedDict index access: 0.005190625000000004 ~ 0.365x faster as iTree
-- xml ElementTree -------——-—————————-————

Exectime time xml ElementTree build: 0.0017907750000001332 ~ 7.886x faster as iTree
Exectime time xml ElementTree key access: 0.16554792499999982 ~ 0.011x faster as iTree
Exectime time xml ElementTree index access: 0.00016492499999998245 ~ 11.032x faster as.
—1iTree

(continues on next page)

86 Chapter 5. Comparison

itertree Documentation, Release 0.8.2

(continued from previous page)

-- anytree ---—----———---— -

Exectime time Anytree build: 0.6392311500000001 ~ 0.022x faster as iTree

Exectime time Anytree key access (no cache): 20.658143574999997 ~ 0.000088x faster as.
—1iTree

Exectime time Anytree index access: 0.06119849999999971 ~ 0.031x faster as iTree

Running the test on a tree with a depth of 150 levels and 22500 items delivers the following result on my PC under
python 3.5.

>>>python iter_performance?2.py

We run for deep tree sizes: depth of 150 with 22500 items and 4 repetitions

Python: 3.9.2 (tags/v3.9.2:1a79785, Feb 19 2021, 13:44:55) [MSC v.1928 64 bit (AMD64)]
blist package is available and used

itertree version: 0.8.0

A relative values >1 related to "iTree means the other object is faster

(relative values <1 means " iTree’ is faster)

Exectime time itertree build append: 0.053359225

Exectime time itertree build (with insert): 0.06587992499999999

Max tree depth 150

Exectime time itertree get max_depth_down~iter_all(): 0.0105537

Exectime time itertree get deep indexes access (all items iterated): 0.5943447749999999
Exectime time itertree get find_all by indexes access (all items iterated): 4.701620525
Exectime time itertree find all by deep tag list (one deep search last item): 0.
—08802357500000024

-- Standard classes -----——--—————---mm—

Exectime time dict build: 0.007973800000000253 ~ 6.692x faster as iTree

Exectime time dict key access: 0.11559847499999965 ~ 0.761x faster as iTree

Exectime time list build (via comprehension): 0.006427750000000287 ~ 8.301x faster as.
—1iTree

Exectime time list index access: 0.04177927499999967 ~ 14.226x faster as iTree

-- SortedDict -----—-------mm

Exectime time SortedDict build: 0.1408219500000003 ~ 0.379x faster as iTree

Exectime time SortedDict key access: 0.13243777499999965 ~ 0.665x faster as iTree

-- xml ElementTree -------——————————————————

Exectime time xml ElementTree build: 0.00898362499999994 ~ 5.940x faster as iTree
Exectime time xml ElementTree key access: 2.8548865250000004 ~ 0.031x faster as iTree
Exectime time xml ElementTree index access: 0.05549647499999999 ~ 10.710x faster as iTree
-- anytree -------———---— -

Exectime time Anytree build: 0.3895624249999994 ~ 0.137x faster as iTree

Anytree key access skipped -> slow

Exectime time Anytree index access: 1.0371582999999998 ~ 0.573x faster as iTree

I have following comments on the findings:

1. iTree objects behave ~ 8-16 times slower then the build in objects like dict, lists, etc. Reason is mainly that iTree is
a pure python package which does not has the the speed advantage of an underlying C-Layer. Anyway a 20 times
slower execution is really not an issue from our point of view. Please consider the wide range of functionalities
found in iTree objects.

2. For untypical access of dict per idx or list per key the builtin objects perform ~ 100 times slower than iTree.

3. The other tree like packages are on par or slower then i7ree (in some cases incredible slower). An exception is
the package xml-ElementTree which incredible fast in case of index access (quicker then builtin lists).

On a large tree of 500000 we have the following findings:

87

itertree Documentation, Release 0.8.2

We run for treesizes: 500000 with 4 repetitions

Python: 3.9.2 (tags/v3.9.2:1a79785, Feb 19 2021, 13:44:55) [MSC v.1928 64 bit (AMD64)]
blist package is available and used

itertree version: 0.8.0

A relative values >1 related to "iTree’ means the other object is faster

(relative values <1 means " iTree’ is faster)

Exectime time itertree build: 1.4585138

Exectime time itertree build: with subtree list comprehension: 1.317420325
Exectime time itertree build (with insert): 1.5535431249999996

Exectime time itertree tag access: 0.23381625000000028

Exectime time itertree tag index access: 0.5307640249999999

Exectime time itertree tag index tuple access: 0.4094945000000001

Exectime time itertree index access: 0.21780237500000066

Exectime time itertree convert iter_all iterator to list: 0.27708437500000027
Exectime time itertree save to file: 2.1980745499999994

Exectime time itertree load from file: 2.7010892500000008

Loaded “iTree’ is equal: True

-- Standard classes ---————————— -

Exectime time dict build: 0.15743670000000165 ~ 9.264x faster as iTree

Exectime time dict key access: 0.11920657499999976 ~ 1.961x faster as iTree
Exectime time dict index access: skipped incredible slow

Exectime time list build (via comprehension): 0.07432719999999904 ~ 17.725x faster as.
—1iTree

Exectime time list build (via append): 0.09793205000000071 ~ 14.893x faster as iTree
Exectime time list build (via insert): Skipped very slow

Exectime time list index access: 0.025543875000000327 ~ 8.527x faster as iTree
Exectime time list key access: Skipped incredible slow

Exectime time OrderedDict build: 0.17470362499999936 ~ 8.349x faster as iTree
Exectime time OrderedDict key access: 0.11788422500000095 ~ 0.234x faster as iTree
Exectime time deque build (append): 0.10968872499999804 ~ 13.297x faster as iTree
Exectime time deque build (insert): 0.1312096000000018 ~ 11.840x faster as iTree
Exectime time deque index access: 7.638674499999997 ~ 0.029x faster as iTree

-- SortedDict -------------mm

Exectime time SortedDict build: 3.445377900000004 ~ 0.423x faster as iTree
Exectime time SortedDict key access: 0.1740121499999958 ~ 1.344x faster as iTree
Exectime time SortedDict index access: 1.105328924999995 ~ 0.197x faster as iTree
-- xml ElementTree ---—----——-——-———————coo—

Exectime time xml ElementTree build: 0.20869660000000323 ~ 6.989x faster as iTree
xml ElementTree key access skipped -> too slow

Exectime time xml ElementTree index access: 0.019160849999998675 ~ 12.203x faster as.
—iTree

-- anytree -—-—---—------mmm oo

Exectime time Anytree build: 5641.44443335 ~ 0.000x faster as iTree

Anytree key access skipped -> incredible slow

Exectime time Anytree index access: not working

Some of the steps are skipped because very bad performance (some functions need hours).

Insertion of elements in lists is very slow. This might only be a minor corner case because filling a list might always be
done by append() or even better with a list comprehension. The iTree insertion mechanism (based on blist) works much
quicker and is nearly on the speed of append(). But we also recommend list comprehension mechanism for quickest
filling of iTree objects too. The mayor time in filling an iTree goes into instance the object (__init__) and if needed in
the internal copy() of iTree items (e.g. see extend() method).

88 Chapter 5. Comparison

itertree Documentation, Release 0.8.2

5.1 iTree vs. dict / collections.OrderedDict

For the base functionality storing data paired with hashable objects as keys in a data structure where one can find the
data by giving the key the dict is quicker then iTree (10x quicker for the building of the structure and 2x quicker for the
item access). But we have a lot of limitations. We cannot store one and the same hashable object (key) multiple times in
the dict (item will always be overwritten). You can build nested dicts by putting sub dicts into dict keys (building nested
structures is only 7x quicker). But the access to this nested structure is very limited no deep iterations are available
out of the box. Also search queries must be programmed outside the dict structure. The normal dict does not support
ordered storage in older python versions, only the OrderedDict extension does this. At least we do not have access to
the order by index we always must create an iterator that can be misused for index access.

Summary: It’s not surprising that the main functional target (key based operations) of the build-in dict object are quicker
compared with the key (tag) based operations we have on iTree. But the a dict is a flat unordered structure and there
is no build-in functionality related to trees. Considering the overall functionality of iTree in all highlighted directions
the speed difference even compared with the “core” functions of a dict are still more than acceptable from our point of
view.

5.2 iTree vs. list / collections.deque

For lists and nested list we can found the same pros and cons we described for dicts in the last chapter except that the
access in list is focused on index and not by keys. We can say that index access in iTrees is also the most performant
way to access items (quicker then tag or Tagldx based access). Insert operations in lists can be also very slow. For
huge trees we recommend to install blist package which out-performances lists in a lot of circumstances (We still don’t
understand why the blist implementation is not used as standard list in python as proposed by the author). Beside the
tag based access iTree objects can also be reached via index lists (not available in lists). The deque object behave in
general as lists. We can quicker insert elements (link-list extension is easy) but get an items index() works much slower
as in normal lists.

Summary: For the core functions lists and deque are 10-18 times quicker than i7ree. But key access is very limited.

5.3 iTree vs. xml ElementTree

The xml ElementTree package goes very much in the same direction as the iTree package. The performance regarding
any list related action is very good and much better than iTree can deliver (C-Layer).

But the handling of ElementTrees is totally different. Trees are normally build by external factory functions even
that an internal build interface is available too (list like behavior). The same tag can be stored multiple times in an
ElementTree (same as in itertree). As the naming tells the package is mainly build to provide all xml related data
structures and functionalities. And the storage and loading into/from files is widely support. By the way serializing of
none string objects in the tree must be managed and organized by the user. The item identification is made via string
only tags and you can’t use hashable object as tags (like in iTree). Even the string usage is limited to the xml naming
convention (e.g. no spaces are allowed). For queries in the tree one can use the powerful xpath syntax. But we think
the iTree filter functions are comparable and because we use filter objects we are more flexible especially very special
filter conditions.

Beside the pure index access iTree is for any operation quicker than the ElementTree (which is surprising because
ElementTree is a c-based implementation). Especially when searching for specific tags and filtering we see bigger
advantages for iTree (not all seen in the performance test). Serialization and storage in iTree is more efficient than in
ElementTree. But iTree does not have all the xml powered higher level functionalities like schemata, etc. which are
support by ElementTree (which is really not the target of iTree). As last remark we can say an xml-serialization of iTree
objects might be easy implemented if needed.

5.1. iTree vs. dict / collections.OrderedDict 89

itertree Documentation, Release 0.8.2

5.4 iTree vs. sorted_dict

The sorted_dict package from sorted_containers might be used for the same proposes iTree is build for. But the archi-
tecture for realization is a bit different. Sorted_dict supports key and index based access. But one cannot store same
key multiple times (behavior is here the same as in normal dicts). The iTree object has not the target of sorting items in
different ways. Furthermore iTree tries to realize filtered access to the items by keeping the original order. In one first
approach the author tried to realize the iTree functionalities with an underlying sorted_dict. But the performance of the
approach was worse and we changed the strategy. iTree does not support the grouping function (union, intersection,
etc.) supported by sorted-dicts. The performance of sorted-dicts regarding the design paradigms of iTree is less good.
Especially building a instance of sorted-dict objects of a huge number is 2 times slower than for iTree objects. Key
access is on par with normal dicts and 2 time quicker than in i7ree.

5.5 iTree vs. anytree

The anytree packages gains mostly in the same direction as itertree. You can find nearly comparable serialization
possibilities. The rendering found in iTree is a simple “copy” of what you can get in anytree. As in i7ree objects you
can combine children of same name with a parent in anytree too. But there are limitations in anytree:

* You can only use string based tags (not hashable objects like in itertree).
* functional properties of a specific item do not exists (iTree.idx, iTree.idx_path,)

* But the main issue from our point of view is the really bad performance in case of huge trees (Especially search
for item.name is very slow)

* filtering is very slow and not as powerful as in itertree

Before the itertree package was developed we thought anytree is the solution to go for and there is no need for a
new package like itertree. But the results of the anytree package tests we did where very ambiguous. Anytree has
a very huge feature-set but also really poor performance. This was also shortly discussed with the author: https:
//github.com/cOfecOde/anytree/issues/169.

At least we came to the conclusion that anytree seems not match to our requirements for tree structured storage and
access. From description it should match, but in practice the package did not work for us as expected.

Summary: For small trees anytree might be an alternative to iTree but when getting to bigger structures (more elements
deeper levels) or when effective filtering is needed iTree has very huge advantages.

90 Chapter 5. Comparison

https://github.com/c0fec0de/anytree/issues/169
https://github.com/c0fec0de/anytree/issues/169

CHAPTER
SIX

BACKGROUND INFORMATION ABOUT ITERTREE

The itertree package is originally developed to be used in an internal test-system configuration and measurement en-
vironment. In this environment we must handle a huge number of parameters and attributes which are configured via
a Graphical User Interface (GUI). The connection of the data and the GUI (editor) is realized via the coupled_object
function we have in iTree. The so created configuration can be interpreted by test-systems and can be stored in version
control systems.

But the idea of tree based configuration is nothing exceptionally new and of course trees can be used for many other
proposes. The itertree package is in Python a new approach to get a very performant solution for these proposes even
when the trees are very huge (many attributes in deep hierarchies).

In our case the package is also used in embedded environments and for this a pure Python implementation helps to pre-
vent us from different type of cross compilations for our targets. The package should run on any Python 3.x interpreter.

6.1 Architecture

To find the best solution we made a lot of testing (check of the already available packages) and we checked other
implementation alternatives (like sorted or ordered dicts) but we came to the conclusion that it makes sense to develop
an own, new package to match all our requirements.

Based on the tests we created an architecture based on a list (blist) and a parallel managed dict that contains the tag
families again as lists (blist).

The iTree objects is build on these three base elements:
e Tree (list) -> main list of items
e _map (dict) -> dict containing the family list (key is tag)
e _data (iTData) -> data object that stores all the data attributes related to the i7ree item

Beside this structure the parent i7ree object is stored in the iTree object by this we create the hierarchy. An iTree object
can only have one parent! When you feed an i7ree object during instantiation as subtree parameter then the i7Tree objects
children will be copied and taken over in the new i7ree. The extend function has the same behavior.

A free to use couple_object can be used to combine an iTree object with any other python object (e.g. an object in a
related tree GUI element).

The profiling of the package done by running over 100000 base operations gives the following result based on blist: ::
Running on itertree version: 0.6.1 100003 0.161 0.000 0.342 0.000 itree_main.py:111(__init__) 100000 0.044 0.000
0.059 0.000 itree_main.py:269(__getitem__) 100000 0.090 0.000 0.383 0.000 itree_main.py:302(__delitem__) 100000
0.239 0.000 0.258 0.000 itree_main.py:870(append) 100000 0.269 0.000 0.286 0.000 itree_main.py:829(insert) 100000
0.160 0.000 0.891 0.000 itree_main.py:725(__copy__) 1 0.154 0.154 0.977 0.977 itree_main.py:919(extend) 100000
0.067 0.000 0.089 0.000 itree_main.py:622(idx)

91

itertree Documentation, Release 0.8.2

We can see that creating copies is the most time consuming operation and it is the reason why the one extend() operation
takes so long.

Running the same profiling actions without blist package (using normal list) we get: :: 100003 0.161 0.000 0.320 0.000
itree_main.py:111(__init__) 100000 0.052 0.000 0.060 0.000 itree_main.py:269(__getitem__) 100000 0.094 0.000
1.266 0.000 itree_main.py:302(__delitem__) 100000 0.140 0.000 0.161 0.000 itree_main.py:870(append) 100000
0.228 0.000 1.895 0.000 itree_main.py:829(insert) 100000 0.129 0.000 0.701 0.000 itree_main.py:725(__copy__) 1
0.149 0.149 0.914 0.914 itree_main.py:919(extend) 100000 0.082 0.000 0.097 0.000 itree_main.py:622(idx)

Especially the index based searches in the lists are take much longer. And especially the insert() take exceptionally
much longer but one may see this as a corner case only because the filling of a huge tree will normally always be done
by appending or even better by extending elements. Inserting a single item is absolutely no issue! Please consider we
talk here about a very huge number of insert() operations (100000). Same arguments can be made for the __delitem__()
operation nobody will delete all the items step by step it’s much easier to delete or clear the parent instead.

We can summarize: Except from the told corner cases the itertree package runs with the same speed (sometimes a bit
faster) even that the blist package is not installed.

6.2 Special iTree objects

In an itertree person might need temporary items or they like to combine the tree from different sources (files). Or they
might like to protect specific items from writing (read only). For this proposes we can integrate special iTree objects
in the itertree.

Besides the normal i7ree object we have three other types of iTree objects available:

e iTreeLink - Link to another iTree file/key so that an itertree can be created from different source files. Also
internal linking to other branches of the root object supported. The children and sub children of these linked
objects are read only. But they can be localized and by this you can cover the orignal linked items by a new
structure.

* iTreeReadOnly - An read_only object that allows no changes in the iTree structure (properties (like data or cou-
pled_object) can be changed)

e iTreeTemporary - a temporary iTree item (These items behave like normal iTree items except that they are not
stored in a file. If dump() is called these items are filtered out.

e iTreePlaceHolder - an internally used object that is used to keep the indexing of localized items during storage.

For data protection a iTDataReadOnly class is available too.

6.3 lterators and filters

An investigation in other packages showed that search algorithms for specific items are sometimes very slow. Even
xml.ElementTree which shows overall a very good performance is not very fast when using the find_all() method.
Beside this the string based xpath syntax is sometimes also a bit difficult and not as powerful and flexible as it might
be needed for complex data structures and data objects different from strings.

In itertree we have the possibility to define filter functionalities for all the iterators delivered by the iter_children(),
iter_all() or find() and find_all() methods. These methods contain a item_filter parameter where the user can give a
filter method or class. Those objects can be cascaded to create complex filters (and/or logic supported).

The filter method is fed by the item and must deliver a True/False after the analysis of the item is done.

The itertree package contains predefined filters in the itree_filter.py file and they can be reached via Filter.iTFilter****
in the code.

92 Chapter 6. Background information about itertree

itertree Documentation, Release 0.8.2

Because we are using iterators the filtering is very effective. The filters can be combined and so the user can create
queries like in a database to catch all information out of the tree and selected the matching items.

The resulting iterator is delivered very quick totally independent from the tree size. After all filtering is combined the
iterator can be consumed and in maximum we will iterate only one time over the whole tree.

6.4 File storage and serializing

At the moment we serialize to JSON and the speed (with orjson module) is comparable with pickle. But we see that
there is still room for improvements and we might get quicker results in the future. Also we might consider other output
formats like MessagePack or xml.

Anyway we allow already the packing and hashing of the data before we store it onto a file. Packing helps to keep the
files small but the cost of calculation time must be considered and sometimes it’s better to use the unpacked files and
combine same into an archive afterwards (independent from itertree). Therefore all these options (packing, hashing)
are optional and can switch off if required.

6.5 Data Structure and Data Models

The data structure of a iTree is not ordered (do not confuse data with the tree structure). It behaves like a normal dict
(We do not see why we should create a second ordered structure here). If the user really needs this he can add any type
of object into the data structure (e.g. also OrderedDict 's). And for newer Python versions the ‘dict is ordered anyway.
But to be honest in this case it might be better to create a deeper iTree containing all the items of the OrderedDict in
an iTree branch instead.

To create a better usability the data structure can be fed directly with only one data object. Alternatively the user can
store also multiple objects by giving key,value pairs. Internally the iTData object is an overloaded dictionary.

The itertree package contains a concept for data models for the attributes stored in the data structure of the iTree. By this
the user can determine what kind of data can be stored in a specific attribute. The iTDataModel is just a basic structure
which can be used to create more advanced models. You might have a look in the examples/itree_data_models.py file
to get a better idea.

In general the data model allows to define the target data type but furthermore also the dimension, the range, etc. Also
the formatting of the data when casted into a string can be defined. E.g. we can define the following data models:

* We can define an integer in the range 0-255 in a 1 dimensional array (/ist) of maximum length 8. Additionally
we like to have a hex representation when converted into a string.

* We define a float value in the range in between -250 and 250 and we like to have a string representation of
maximum 3 digits and added by a unit string “V”* (“%.3f V).

If a data model is stored in the data structure we can put only values into the related attribute that are matching to the
model. In case of no matching values the set command will raise an iDataValueError exception.

Note: If define your own data_models and or iData classes ensure that you create a matching interface! E.g. the
check() and _validator() methods must deliver the value as return (needed for recursive operations).

6.4. File storage and serializing 93

itertree Documentation, Release 0.8.2

94

Chapter 6. Background information about itertree

CHAPTER
SEVEN

ITERTREE - INTRODUCTION

Do you have to store data in a tree like structure? Do you need good performance, a reach feature set especially in case
of filtered access to all data and the possibility to serialize and store the structure in files? Or do you like to use links
to sub-trees and to cover items from a linked structure with new data?

Give itertree package a try!

The main class for construction of the itertree trees is the iTree class. The class allows the construction of trees like
this:

iTree(‘root’,data="xyz’)
L—iTree(‘subitem1’,data="abc’)
L—iTree(‘subsubitem1’,data={‘a’:’b’,)’b’:’c’})
L—iTree(‘subitem2’,data={1:2})
L—iTree(‘subitem?2’,data={2:3})

Every node in the itertree (iTree object) contains two parts of stored information:
« First the related sub-structure (iTree-children)
* Second the item related data attribute were any kind of object can be stored in

The itertree solution can be compared with nested dicts or lists. Other packages that targeting in the in the same
direction are anytree, xml.ElementTree, sorted_containers. In detail the feature-set and functional focus of iTree is a
bit different. An overview of the advantage and disadvantages related to the other packages is given in the chapter
Package Comparison.

7.1 Status and compatibility information

Version | 0.8.2] has been released!
Be sure to read the changelog before upgrading!
Please use the github issues to ask questions report problems.

Please do not email me directly.

The original implementation is done in Python 3.5 and it is tested under Python 3.5 and 3.9. It should work in all
Python 3 environments.

The actual development status is “beta - release candidate’.

95

https://github.com/BR1py/itertree/issues

itertree Documentation, Release 0.8.2

7.2 Feature Overview

The main features of the iTree object in itertree can be summarized in:

trees can be structured in different levels (nested trees: parent - children - sub-children -)
the identification tag can be a string or any kind of object that is hashable

tags must not be unique (same tags are enumerated and collect in a tag-family)

item access is possible via tag, tag-index, index, slices

iTree keeps the order of the added children

the item related data is stored in a protected data structure where data models can be used to evaluate the given
data values

a iTree can contain linked/referenced items (linking to other internal tree parts or to an external itertree file is
supported)

in a linked iTree specific items can be localized and they can cover linked elements
standard export/import to JSON (incl. numpy and OrderedDict data serialization)
designed for performance (huge trees with hundreds of levels)

it’s a pure python package (should be therefore usable in all embedded environments)

Here is very simple example of itertree usage:

>>>
>>>
>>>
>>>
>>>
>>>
>>>

from itertree import *
root=iTree('root',data={"'mykey':03})
root+=iTree('sub',data={"'mykey':1})
root+=iTree('sub',data={"'mykey':23})
root+=iTree('sub',data={ 'mykey':3})
root.append(iTree('sub',data={ 'mykey':4}))
root.render()

iTree('root', data="{'mykey': 0}")
L _iTree('sub', data="{'mykey': 1}")
L—iTree('sub', data="{'mykey': 2}")
L—iTree('sub', data="{'mykey': 3}")
L _iTree('sub', data="{'mykey': 4}™)

7.3 Documentation Content

Introduction - Short introduction to the itertree package

Tutorial - A detailed Tutorial including functional sorted reference description
API Reference - API Description of all containing classes and methods of itertree
Usage Examples - itertree usage examples

Comparison - Compare itertree with other packages

Background information - Some background information about itertree and the target of the development

96

Chapter 7. itertree - Introduction

itertree Documentation, Release 0.8.2

7.4 Getting started, first steps

7.4.1 Installation and dependencies
The package is a pure python package and does not have any dependencies. But we have two recommendations which
give the package additional performance:

* blist - Highly recommended! This will speedup the iTree performance in huge trees especially for inserting and
lefthandside operations

— package link: https://pypi.org/project/blist/
— documentation: http://stutzbachenterprises.com/blist/.
-> in case the package is not found normal list object will be used instead
* orjson - A quicker json parser that used to create the JSON structures during serializing/deserializing
-> in case orjson is not found, ujson package is checked too
-> in case both not found normal json package will be used

To install the itertree package just run the command:

pip install itertree

The structure of folder and files related to this package looks like this:
e itertree (main folder)
— __init__.py
— itree_main.py
— itree_data.py
— itree_filter.py
— itree_helpers.py
— itree_serialize.py
— examples
* itree_performance.py
itree_performance2.py
itree_profile.py
% itree_profile2.py
% itree_data_models.py
% itree_usage_examplel.py
* itree_usage.py

% itree_link_examplel.py

7.4. Getting started, first steps 97

https://pypi.org/project/blist/
http://stutzbachenterprises.com/blist/

itertree Documentation, Release 0.8.2

7.4.2 First steps

All important classes of the package are published by the __init__.py file so that the functionality of itertree can be
reached by simply importing:

>>> from itertree import *

Note: This import is a precondition for all shown code examples in this documentation.

The itertree trees are build by adding iTree-objects to a iTree-parent-object. This means we do not have an external tree
generator.

We start now building a itertree with the recommended method for adding items. You can just use the += operator (
__ifadd__()) which adds a child item to the parent item left of =+ operator. The classical append() method is available
too.

>>> root=iTree('root') # first we create a root element
>>> root+=iTree(tag="'child', data=0) # add a child via += operator
>>> root+=iTree(tag=(1,2,3), data=1) # add next child (tag is tuple, a hashable object)
>>> root+=iTree(tag="'child2', data=2) # add next child
>>> root.render() # show the current tree
iTree('root")
L —iTree('child', data=0)
L—iTree((1, 2, 3), data=1)
L —iTree('child2', data=2)

Each iTree-object must have a tag which is the main part of the identifier of the object. For tags you can use any type
of hashable objects except integers and Tagldx objects (these objects are used for index access and they are therefore
not allowed as tags).

Different than the keys in dictionaries the given tags must not be unique:

>>> root+=iTree(tag="child', data=3)
>>> root+=iTree(tag="child', data=4)
>>> root.render()
iTree('root"')
L —iTree('child', data=0)
L—iTree((1, 2, 3), data=1)
L—iTree('child2', data=2)
L —iTree('child', data=3)
L —iTree('child', data=4)

In the iTree object equal tags are enumerated in a tag-family and they can be reached/identified via the helper object
Tagldx.

>>> print(root[TagIdx('child',1)])
iTree(tag="child', data=3)

>>> print(root[3])
iTree(tag="child', data=3)

To add subitems we can address the child item also by index (or Tagldx) and add a sub-item.

98 Chapter 7. itertree - Introduction

itertree Documentation, Release 0.8.2

>>> root[0]+=iTree('subchild")
>>> print(root[0][0])
iTree("'subchild'")

After the tree is generated we can iterate over the tree:

>>> a=[1 for i in root.iter_children()] # iter over the children and put result in list
>>> print(a)

[iTree("'child'", data=0, subtree=[iTree("'subchild'")]), iTree("(1, 2, 3)", data=1),.
—iTree("'child2'", data=2), iTree("'child'", data=3), iTree("'child'", data=4)]

>>> b=[1 for i in root.iter_all()] # iter over all items (all levels) and put them into.
—a list

>>> print(b)

[iTree("'child'", data=0, subtree=[iTree("'subchild'")]), iTree("'subchild'"), iTree("(1,
-~ 2, 3)", data=1), iTree("'child2'", data=2), iTree("'child'", data=3), iTree("'child'",
— data=4)]

The iterators and find functions of itertree have a item_filters parameter in which filter functions/objects can be placed
in to search for specific properties. The provided filter objects can also be cascaded.

>>> result=root.find_all(['**'],item_filter=Filter.iTFilterDataValue(2)) # '**' is a,
—wildcard for any item; result is an iterator
>>> print(list(result))

[iTree(tag="child',data=2)]

The data handling can be done over set and get functions, if no specific key is given the _ NOKEY _ element will be
addressed automatically. This is very helpful in case you want to store just one data object in the iTree-object.

>>> root=iTree('root")

>>> root.d_set(l)

>>> root.d_get()

1

>>> root.d_set('mykey',2)

>>> root.d_get() # the ("__NOKEY__") data item is untouched by the last operation
1

>>> root.d_get('mykey"')

2

>>> item=iTree('root2',data={'A':'a','B':'b'})
>>> item.data

"{'A': 'a', 'B': 'b'}"

At least the itertree can be stored and reconstructed from a file. We can also link an item to a specific item in a file
(external link) or create internal links.

>>> root.dump('dt.dtz') # dtz is the recommended file ending for the zipped dataset file
>>> root2=root.load('dt.dtz') # for loading a itertree any available iTree object can be.
—used

>>> print(root2==root)

True

>>> root+=iTree('link',link=iTLink(dt.dtz',iTreeTagIdx(child"',0))) # The node item will.,
—integrate the children of the linked item.

7.4. Getting started, first steps 99

itertree Documentation, Release 0.8.2

7.5 iterators vs. lists

We named the package itertree because when ever a iTree operation delivers multiple items the result will be an iterator
(and not a list what the user might expect).

Iterators are very powerful objects especially if you have a huge number of items to be iterated over. Iterators can be
created very fast and they can be combined. So you can create very effective filter functions. It’s recommended to have
a look in the powerful itertools and more_itertools packages to combine it with itertree

The main idea is to combine all the filtering and iterator options together before you start the final iteration (consume the
iterator), which might at least end up in the expected list. By this mechanism we do at least only one unique iteration
over the items and we must not do multiple typecasts and re-iterations in between even when we combine multiple
filters.

If the user really wants to create a list he can easy cast the iterator by using the /is#() statement:

>>> myresultlist=list(root.iter_all()) # this is quick even for huge number of items
>>> first_item=list(root.iter_all())[0] # Anyway this is much slower than:

>>> first_item=next(root.iter_all())

>>> fifth_item=1list(root.iter_all())[4] # and this is much slower than:

>>> import itertools

>>> fifth_item=next(itertools.isslice(root.iter_all(),4,None))

As it is shown in the performance test the operation /ist() is very quick (less then 0.5 s on 1 million items (depending
on you PC)). And using the index access afterwards is a very good readable code. But as shown here there are quicker
solutions available on iterators only.

But we see also two downsides related to iterators:

» The Stoplteration exception must be handled in case of empty iterators. To make the handling a bit easier iTree
delivers in most cases an empty list if we have no match. But in some cases (e.g. filter operations) the user will
get an empty iterator and not the empty list. In itree_helpers the user can find a check function for empty iterators
that might help in this case: is_iterator_empty(my_iterator).

* The user must also consider that an iterator can be consumed only one time. To reuse an iterator multiple times
you may have a look on itertools.tee().

To summarize this chapter:

We decided that the iTree methods should deliver only iterators (and not lists). This is made to give the user the
possibility to utilize the whole iterator power afterwards. If he really needs a list (in most cases for index access) he
can cast the iterator easy and quick via the list() statement. But if iTree would directly deliver lists by default we would
have a performance drop in all itertree filter functions which is not acceptable from our point of view.

100 Chapter 7. itertree - Introduction

itertree.
itertree.
itertree.
itertree.

itree_data, 61
itree_helpers, 71
itree_main, 35
itree_serialize, 67

PYTHON MODULE INDEX

101

itertree Documentation, Release 0.8.2

102 Python Module Index

Symbols

__contains__(Q) (in module itertree.iTree), 12

__delitem__() (in module itertree.Data.iTData), 17

__delitem__(Q) (in module itertree.iTree), 11

__eq__Q (in module itertree.iTree), 12

__getitem__() (in module itertree.Data.iTData), 16

__getitem__Q) (in module itertree.iTree), 9

__hash__Q (in module itertree.iTree), 12

__iadd__Q (in module itertree.iTree), 7

__init__QO (in
itertree.itree_helpers.iTInterval), 32

__init__Q (in module itertree.itree_helpers.iTMatch),
32

__init__Q (itertree.iTree method), 6

__iter__Q) (in module itertree.iTree), 18

__len__Q) (in module itertree.iTree), 12

__repr__Q) (in module itertree.iTree), 25

__setitem__(Q) (in module itertree.Data.iTData), 16

__setitem__() (in module itertree.iTree), 11

A

accu_iterator() (in module itertree.itree_helpers), 71

append () (in module itertree.iTree), 7

append () (itertree.itree_main.iTree method), 42

append () (itertree.itree_main.iTreeLink method), 52

append () (itertree.itree_main.iTreeReadOnly method),
51

appendleft () (in module itertree.iTree), 7

appendleft) (itertree.itree_main.iTree method), 42

appendleft () (itertree.itree_main.iTreeLink method),
52

appendleft ()
method), 51

module

(itertree.itree_main.iTreeReadOnly

C

check () (itertree.itree_helpers.iTInterval method), 72

check () (itertree.itree_helpers.iTMatch method), 73

clear () (in module itertree.iTree), 8, 11

clear() (itertree.itree_data.iTData method), 58, 64

clear () (itertree.itree_data.iTDataModel method), 56,
62

INDEX

clear () (itertree.itree_data.iTDataReadOnly method),
61, 67

clear() (itertree.itree_main.iTree method), 41

clear () (itertree.itree_main.iTreeLink method), 55

clear () (itertree.itree_main.iTreeReadOnly method), 52

copy Q) (in module itertree.iTree), 11

copy Q) (itertree.itree_data.iTData method), 58, 64

copy Q) (itertree.itree_main.iTree method), 40

count () (in module itertree.iTree), 12

count () (itertree.itree_main.iTree method), 41

count_all () (itertree.itree_main.iTree method), 41

coupled_object (itertree.itree_main.iTree property), 40

coupled_object () (in module itertree.iTree), 15

D

d_check () (itertree.itree_main.iTree method), 38

d_del Q) (in module itertree.iTree), 16

d_del O (itertree.itree_main.iTree method), 38

d_get () (in module itertree.iTree), 15

d_get Q) (itertree.itree_main.iTree method), 37

d_pop) (in module itertree.iTree), 17

d_pop O (itertree.itree_main.iTree method), 38

d_set () (in module itertree.iTree), 16

d_set Q) (itertree.itree_main.iTree method), 37

d_update() (in module itertree.iTree), 17

d_update() (itertree.itree_main.iTree method), 37

data (itertree.itree_main.iTree property), 37

DATA (itertree.itree_serialize.iTStdObjSerializer
tribute), 68

data () (in module itertree.iTree), 15

at-

DATA_CONTAINER (itertree.itree_serialize.iTStdObjSerializer

attribute), 68

DATA_MODELL (itertree.itree_serialize.iTStdObjSerializer
attribute), 68

decode() (itertree.itree_serialize.iTStdObjSerializer
method), 68

deepcopy) (itertree.itree_data.iTData method), 60, 66

deepcopy) (itertree.itree_main.iTree method), 41

delete_item() (itertree.itree_data.iTData method), 59,
65

delete_item() (itertree.itree_data.iTDataReadOnly
method), 61, 67

103

itertree Documentation, Release 0.8.2

depth_up (itertree.itree_main.iTree property), 39

depth_up) (in module itertree.iTree), 13

dict_repr(Q) (itertree.itree_helpers.iTLink method), 73

DTYPE (itertree.itree_serialize.iTStdObjSerializer — at-
tribute), 68

dump () (in module itertree.iTree), 25

dump Q) (itertree.itree_main.iTree method), 50

dump O (itertree.itree_serialize.iTStdJSONSerializer
method), 69

dumps () (in module itertree.iTree), 25

dumps) (itertree.itree_main.iTree method), 50

dumps) (itertree.itree_serialize.iTStdJSONSerializer
method), 69

dumps2() (itertree.itree_serialize.iTStdJSONSerializer
method), 69

E

encode() (itertree.itree_serialize.iTStdObjSerializer
method), 68

equal Q) (in module itertree.iTree), 12

equal O (itertree.itree_main.iTree method), 40

equal Q) (itertree.itree_main.iTreeLink method), 55

extend () (in module itertree.itree_main.iTree), 7

extend() (itertree.itree_main.iTree method), 42

extend() (itertree.itree_main.iTreeLink method), 52

extend() (itertree.itree_main.iTreeReadOnly method),
51

extendleft) (in module itertree.itree_main.iTree), 7

extendleft) (itertree.itree_main.iTree method), 42

extendleft () (itertree.itree_main.iTreeLink method),
52

extendleft ()
method), 51

(itertree.itree_main.iTreeReadOnly

F?

file_path (itertree.itree_helpers.iTLink property), 72

find Q) (in module itertree.iTree), 10

find Q) (itertree.itree_main.iTree method), 48

find_all () (in module itertree.iTree), 20

find_all) (itertree.itree_main.iTree method), 45

find_all2() (itertree.itree_main.iTree method), 47

formatter() (itertree.itree_data.iTDataModel method),
57,63

formatter() (itertree.itree_data.iTDataModelAny
method), 57, 64

from_str() (itertree.itree_helpers.iTInterval method),
72

fromkeys () (itertree.itree_data.iTData method), 59, 65

G

get Q) (itertree.itree_data.iTData method), 59, 65
get () (itertree.itree_data.iTDataModel method), 56, 62
get_deep() (in module itertree.iTree), 10

get_deep() (itertree.itree_main.iTree method), 41

get_last_local_idx() (itertree.itree_main.iTreeLink
method), 54

GET_LOOK_UP_METHOD
attribute), 58, 64

(itertree.itree_data.iTData

idx (itertree.itree_helpers.Tagldx attribute), 73

idx (itertree.itree_main.iTree property), 40

IDX (itertree.itree_serialize.iTStdObjSerializer attribute),
68

idx () (in module itertree.iTree), 14

idx_path (itertree.itree_main.iTree property), 39

idx_path() (in module itertree.iTree), 14

index () (in module itertree.iTree), 20

index () (itertree.itree_main.iTree method), 49

INF (itertree.itree_helpers.iTInterval attribute), 72

init_serializer () (in module itertree.iTree), 26

init_serializer () (itertree.itree_main.iTree method),
36

insert () (in module itertree.itree_main.iTree), 8

insert () (itertree.itree_main.iTree method), 41

insert () (itertree.itree_main.iTreeLink method), 53

insert() (itertree.itree_main.iTreeReadOnly method),
51

is_empty (itertree.itree_data.iTData property), 60, 66

is_empty (itertree.itree_data.iTDataModel property),
56, 62

is_equal (itertree.itree_helpers.iTInterval property), 72

is_iTData (itertree.itree_data.iTData property), 60, 66

is_iTDataModel (itertree.itree_data.iTDataModel
property), 56, 62

is_iterator_empty()
itertree.itree_helpers), 71

is_iTLink (itertree.itree_helpers.iTLink property), 72

is_iTMatch (itertree.itree_helpers.iTMatch property),
73

is_key_empty() (itertree.itree_data.iTData method),
60, 66

is_link_loaded (itertree.itree_main.iTreeLink prop-
erty), 53

is_link_root (itertree.itree_main.iTreeLink property),
53

is_linked (itertree.itree_main.iTree property), 39

is_linked () (in module itertree.iTree), 14

is_loaded (itertree.itree_helpers.iTLink property), 72

is_no_key_only (itertree.itree_data.iTData property),
60, 66

is_placeholder (itertree.itree_main.iTree property), 39

is_read_only (itertree.itree_main.iTree property), 38

is_read_only() (in module itertree.iTree), 13

is_root (itertree.itree_main.iTree property), 38

is_root () (in module itertree.iTree), 13

is_TagIdxBytes (itertree.itree_helpers.TagldxBytes
property), 74

(in module

104

Index

itertree Documentation, Release 0.8.2

is_TagIdxStr (itertree.itree_helpers.TagldxStr prop-
erty), 73

is_TagMultiIdx (itertree.itree_helpers. TagMultildx
property), T4

is_temporary (itertree.itree_main.iTree property), 39

is_temporary() (in module itertree.iTree), 13

iTData (class in itertree.itree_data), 58, 64

iTDataModel (class in itertree.itree_data), 56, 62

iTDataModel () (in module itertree.itree_data), 33

iTDatalModelAny (class in itertree.itree_data), 57, 63

iTDataReadOnly (class in itertree.itree_data), 60, 66

iTDataTypeError, 56, 62

iTDataValueError, 56, 62

iter_all () (in module itertree.iTree), 18

iter_all) (itertree.itree_main.iTree method), 43

iter_all_bottom_up() (in module itertree.iTree), 19

iter_all_bottom_up() (itertree.itree_main.iTree
method), 44

iter_children() (in module itertree.iTree), 18

iter_children() (itertree.itree_main.iTree method),
45

iter_idxs_all() (itertree.itree_main.iTree method),
45

iter_locals () (in module itertree.iTreeLink), 28

iter_locals() (itertree.itree_main.iTreeLink method),
54

iter_tag_idxs () (in module itertree.iTree), 20

iter_tag_idxs() (itertree.itree_main.iTree method),

45
iter_tag_idxs_all(Q) (itertree.itree_main.iTree
method), 45

itertree.itree_data
module, 55, 61
itertree.itree_helpers
module, 71
itertree.itree_main
module, 35
itertree.itree_serialize
module, 67
iTFilterBase() (in module itertree.Filter), 24
iTFilterData() (in module itertree.Filter), 23
iTFilterDataKey () (in module itertree.Filter), 23
iTFilterDataKeyMatch() (in module itertree.Filter),
24
iTFilterDataValueMatch()
itertree.Filter), 24
iTFilterItemTagMatch() (in module itertree.Filter),
23
iTFilterItemType() (in module itertree.Filter), 23
iTFilterTrue() (in module itertree.Filter), 22
iTInterval (class in itertree.itree_helpers), 71
iTInterval) (in module itertree.itree_helpers), 31
iTLink (class in itertree.itree_helpers), 72
iTMatch (class in itertree.itree_helpers), 73

(in module

iTMatch Q) (in module itertree.itree_helpers), 32
iTree (class in itertree), 5
iTree (class in itertree.itree_main), 35

ITREE_ITEMS_DECODE (itertree.itree_serialize.iTStdObjSerializer

attribute), 68

ITREE_ITEMS_ENCODE (itertree.itree_serialize.iTStdObjSerializer

attribute), 68
iTreeLink (class in itertree.itree_main), 52
iTreeLink () (in module itertree), 27
iTreePlaceHolder (class in itertree.itree_main), 55
iTreeReadOnly (class in itertree.itree_main), 51
iTreeTemporary (class in itertree.itree_main), 52
iTStdJSONSerializer (class in
itertree.itree_serialize), 68
iTStdObjSerializer (class in itertree.itree_serialize),
68
iTStdRenderer (class in itertree.itree_serialize), 70

K

key_path (itertree.itree_helpers.iTLink property), 72

L

LINK (itertree.itree_serialize.iTStdObjSerializer at-
tribute), 68

link_data (itertree.itree_helpers.iTLink property), 73

link_item (itertree.itree_helpers.iTLink property), 72

link_item (itertree.itree_main.iTree property), 39

link_root (itertree.itree_main.iTreeLink property), 53

link_tag (itertree.itree_helpers.iTLink property), 73

load) (in module itertree.iTree), 25

load) (itertree.itree_main.iTree method), 50

load() (itertree.itree_serialize.iTStdJSONSerializer
method), 69

load_links () (in module itertree.iTreeLink), 28

load_links () (itertree.itree_main.iTree method), 49

load_links () (itertree.itree_main.iTreeLink method),
54

loaded (itertree.itree_helpers.iTLink property), 72

loads () (in module itertree.iTree), 26

loads () (itertree.itree_main.iTree method), 50

loads() (itertree.itree_serialize.iTStdJSONSerializer
method), 69

M

make_child_local () (in module itertree.iTreeLink), 28

make_child_local () (itertree.itree_main.iTreeLink
method), 54

make_self local () (in module itertree.iTreeLink), 28

make_self_local() (itertree.itree_main.iTreeLink
method), 54

math_repr () (itertree.itree_helpers.iTInterval method),
72

max_depth_down (itertree.itree_main.iTree property), 39

max_depth_down () (in module itertree.iTree), 13

Index

105

itertree Documentation, Release 0.8.2

model_items () (itertree.itree_data.iTData method), 60,
66
model_values() (itertree.itree_data.iTData method),
59, 65
module
itertree.
itertree.

itree_data, 55, 61
itree_helpers, 71
itertree.itree_main, 35
itertree.itree_serialize, 67
move () (in module itertree.itree_main.iTree), 8
move () (itertree.itree_main.iTree method), 43

O

renders () (itertree.itree_main.iTree method), 51

renders() (itertree.itree_serialize.iTStdRenderer
method), 70

renders2() (itertree.itree_serialize.iTStdRenderer
method), 70

reverse() (in module itertree.iTree), 12

reverse() (itertree.itree_main.iTree method), 43

reverse() (itertree.itree_main.iTreeLink method), 52

reverse() (itertree.itree_main.iTreeReadOnly method),
51

root (itertree.itree_main.iTree property), 38

root () (in module itertree.iTree), 13

rotate() (in module itertree.iTree), 12

OTHER_ITEMS_DECODE (itertree.itree_serialize.iTStdObjSerkfitzzre O (itertree.itree_main.iTree method), 43

attribute), 68

rotate() (itertree.itree_main.iTreeLink method), 52

OTHER_ITEMS_ENCODE (itertree.itree_serialize.iTStdObjSertifitzare O (itertree.itree_main.iTreeReadOnly method),

attribute), 68

P

parent (itertree.itree_main.iTree property), 38

parent () (in module itertree.iTree), 13

pop) (in module itertree.Data.iTData), 17

pop O (in module itertree.itree_main.iTree), 8

pop QO (itertree.itree_data.iTData method), 58, 64

pop) (itertree.itree_data.iTDataReadOnly method), 60,
66

pop Q) (itertree.itree_main.iTree method), 42

pop) (itertree.itree_main.iTreeLink method), 53

pop Q) (itertree.itree_main.iTreeReadOnly method), 51

popleft () (in module itertree.itree_main.iTree), 8

popleft () (itertree.itree_main.iTree method), 43

popleft () (itertree.itree_main.iTreeLink method), 53

popleft () (itertree.itree_main.iTreeReadOnly method),
52

post_item (itertree.itree_main.iTree property), 39

post_item() (in module itertree.iTree), 13

pre_item (itertree.itree_main.iTree property), 39

pre_item() (in module itertree.iTree), 13

R

remove () (itertree.itree_main.iTree method), 43

remove () (itertree.itree_main.iTreeLink method), 53

remove () (itertree.itree_main.iTreeReadOnly method),
52

rename () (in module itertree.itree_main.iTree), 8

rename () (itertree.itree_main.iTree method), 43

rename () (itertree.itree_main.iTreeLink method), 53

render () (in module itertree.iTree), 25

render () (itertree.itree_main.iTree method), 51

render () (itertree.itree_serialize.iTStdRenderer
method), 70

render2() (itertree.itree_serialize.iTStdRenderer
method), 70

renders () (in module itertree.iTree), 25

51

S

set () (itertree.itree_data.iTDataModel method), 56, 62

set_coupled_object () (in module itertree.iTree), 15

set_coupled_object() (itertree.itree_main.iTree
method), 40

set_loaded() (itertree.itree_helpers.iTLink method), 73

set_source_path() (itertree.itree_helpers.iTLink
method), 73

sort () (itertree.itree_main.iTree method), 37

source_path (itertree.itree_helpers.iTLink property), 73

T

tag (itertree.itree_helpers.Tagldx attribute), 73

tag (itertree.itree_main.iTree property), 40

TAG (itertree.itree_serialize.iTStdObjSerializer attribute),
68

tag_idx (itertree.itree_main.iTree property), 40

tag_idx () (in module itertree.iTree), 14

tag_idx_path (itertree.itree_main.iTree property), 39

tag_idx_path() (in module itertree.iTree), 14

TagIdx (class in itertree.itree_helpers), 73

TagIdx () (in module itertree.itree_helpers), 33

TagIdxBytes (class in itertree.itree_helpers), 73

TagIdxBytes() (in module itertree.itree_helpers), 33

TagIdxStr (class in itertree.itree_helpers), 73

TagIdxStr() (in module itertree.itree_helpers), 33

TagMultiIdx (class in itertree.itree_helpers), 74

TREE (itertree.itree_serialize.iTStdObjSerializer
tribute), 68

at-

U

update () (in module itertree.Data.iTData), 18

update () (itertree.itree_data.iTData method), 58, 64

update() (itertree.itree_data.iTDataReadOnly method),
60, 66

106

Index

itertree Documentation, Release 0.8.2

V

validator () (itertree.itree_data.iTDataModel method),
56, 63

validator() (itertree.itree_data.iTDataModelAny

method), 57, 63
value (itertree.itree_data.iTDataModel property), 56, 62

Index 107

	Changelog
	Version 0.8.2
	Version 0.7.3
	Version 0.7.2
	Version 0.7.1
	Version 0.7.0
	Version 0.6.0
	Version 0.5.0

	Tutorial
	Status and compatibility information
	Using the itertree package
	Construction of an itertree
	item access
	iTree other structure related commands
	iTree compare items
	iTree properties
	iTree data related methods
	iTree iterators and queries
	iTree formatted output
	iTree file storage
	iTree linked sub-trees
	iTree helpers classes

	itertree package
	Indices and tables
	Modules
	The main itertree class
	itertree data classes
	itertree filter classes
	itertree serializing
	itertree helper classes
	Subpackages

	itertree examples package
	Usage examples
	Modules
	itertree usage example
	itertree data models example
	itertree link example
	itertree editor example
	itertree performance example
	itertree profiler example

	Comparison
	iTree vs. dict / collections.OrderedDict
	iTree vs. list / collections.deque
	iTree vs. xml ElementTree
	iTree vs. sorted_dict
	iTree vs. anytree

	Background information about itertree
	Architecture
	Special iTree objects
	Iterators and filters
	File storage and serializing
	Data Structure and Data Models

	itertree - Introduction
	Status and compatibility information
	Feature Overview
	Documentation Content
	Getting started, first steps
	Installation and dependencies
	First steps

	iterators vs. lists

	Python Module Index
	Index

