itertree Documentation
Release 1.0.5

B.R.

Jul 01, 2023

1 Changelog

2 Tutorial

3 itertree package

4 itertree examples

5 Comparison

6 Background information about itertree
7 itertree - Introduction

Python Module Index

Index

CONTENTS

89
143
151
177
183
191

193

itertree Documentation, Release 1.0.5

e Introduction - Short introduction to the itertree package

* Tutorial - A tutorial with examples and an ordered reference of the main functions of itertree
* API Reference - API Description of all containing classes and methods of itertree

» Usage Examples - itertree usage examples

e Comparison - Compare itertree with other packages

* Background information - Some background information about itertree and the target of the development

CONTENTS 1

itertree Documentation, Release 1.0.5

2 CONTENTS

CHAPTER
ONE

CHANGELOG

1.1 Version 1.0.5

Minor bugfix (escapes).

And correct issues related wrong commit in 1.0.3

1.2 Version 1.0.3

This version contains minor changes related to comments and the test setup.
Deleting of items targeted via slice are improved. E.g.: del mytree[10:100]
We appended a new version of blist which can be used in python 3.10 and 3.11 environments.

Issues #21,#22 solved.

1.3 Version 1.0.1

Full released

After the whole functionality was implemented in the previous versions we made a review of the interfaces of the
iTree class and we came to the decision that we should align it more with the standard interfaces in python (especially
related to list and dict standard methods). Finally we updated a lot of methods to a more clearer naming and a more
standardized behavior. We apologize that the changes leads into adaptions of already existing implementations of the
users. But we hope that you understand after some tries that the new interface is much clearer and easier to use.

The functionalities related to the nested (in-depth) structure are now moved in an internal helper-class which is reach-
able via itree.deep.

Furthermore we saw in practice that item access is most often made via absolute index or tag,index pair (key). There-
fore we changed the paradigm of targeting those kind of targets easier and with higher priority. In case of conflicts
with the index or tag-index pair the user must give the lower prioritized family-tags in a specific way. The number
of possible targets is increased especially a level-filter is now available too. As a side effect the limitation related to
integer keys we had is no more there. Integers can now be used as tags too. In general with this release any hashable
object can be used as tag.

In case the user instance an i7Tree-object without a tag or without a value. We have new default values (NoTag and
NoValue) which are used automatically in this case. This is made implicit and allows the build of very simple trees
without any overhead anymore. The append of values to a tree with implicit instancing the related i7ree-object is made
based on the NoTag definition available.

itertree Documentation, Release 1.0.5

The equal check == operator is now checking for same content and no more on the identical instance (as it is in list's
too). For identical instance checks the user must use the “is build-in statement. But please check on the side effects of
this change (read here the changed behavior of the index() command which is now the same like in lists (first match is
delivered).

We deleted the find-functions from the object because we first thought they were too confusing and second the filter
possibilities in all the methods are largely extended. We do not see any case (from old find functions) that can not be
covered by the method-parameter-set we have. The filter functions are also simplified in a way that any filter-method
can be used now, we do not need any more a special filter-object to be used.

Finally we uncoupled a lot of functionalities, especially the usage of the data property is changed here. iTree can now
be used without any limitations related to the stored data. We do not expect here any more a dict-like-object. The
provided data models can still be used if required but there is no more coupling anymore. To align with the standard
dict-class we renamed the related attribute from data to value.

As a side effect the performance of the iTree could be improved again. We eliminated the different classes of iTree
related to read_only behavior. We now use a set of methods and flags. The advantage is that the objects can now
change their behavior without changing the instance of the original object (in-place-operation).

iTree objects can now be pickled (if the trees are deeper than 200 levels RecursionError will be raised (std. recursion-
limit)). The serializers and rendering is updated too.

The MIT licence was extended by a “human protect patch”.

To symbolize the stability and also the final fix of the interface we decided to create the first full released version. The
testsuite is largely expanded for this step.

1.4 Version 0.8.2

We reworked the itertree data module so that iData class behaves much better like a dict. All overloaded methods are
improved to match the dict interface. Also iTDataModel is changed and is now a class that must be overloaded.

The value validator() raises now an iTDataValueError or iTDataTypeError exception directly. This behavior match
from our point of view much better to the normal Python behavior compaired with the old style were we delivered a
tuple containing the error information.

->Please consider this interface change in your code.
Second we focused for this release on the extension of functionalities related to linked iTrees:

* create internal links (reference to another tree part of the current tree)

* Jocalize and cover of linked elements

* an example file related to the usage of links is available now
Beside this we started to extend the unit testing for the package and we fixed a lot of smaller bugs.
Because of some internal simplifications in iTree class the overall performance is again improved a bit.
The documentation was reviewed and improved.

No new features are planned at the moment and we just wait to complete the unit test suite, before we will do an
official 1.0.0 release.

Still Beta SW -> but release candidate!

4 Chapter 1. Changelog

itertree Documentation, Release 1.0.5

1.5 Version 0.7.3

Bugfixes in repr() and render()
Extended examples

Still Beta SW -> but release candidate!

1.6 Version 0.7.2

Improved Interval class (dynamic limits in all levels)
Adapted some tests and the documentation

Still Beta SW -> but release candidate!

1.7 Version 0.7.1

Bigger bugfix on 0.7.0 which was really not well tested!

Still Beta SW -> but release candidate!

1.8 Version 0.7.0

Recursive functions are rewritten to use an iterative approach (recursion limit exception should be avoided)
Access to the deeper structures improved (find_all, new getitem_deep() and max_depth_down() method.
New iTree classes for Linked, Temporary or ReadOnly items

performance improved again

Examples regarding data models added

Still Beta SW -> but release candidate!

1.9 Version 0.6.0

Improved interface and performance
Documentation is setup

Testing is improved

Examples still missing

Beta SW!

1.5. Version 0.7.3 5

itertree Documentation, Release 1.0.5

1.10 Version 0.5.0

First released version

Contains just the base functionalities of itertree. Interface is is finished by 80%
Documentation and examples are missing

testing is not finished yet.

Beta SW!

6 Chapter 1. Changelog

CHAPTER
TWO

TUTORIAL

In this part of the documentation we try to dive in the functions of itertree in a clear structured way. The user might
look in the class description of the modules too. But the huge number of methods in the iTree class might be very
confusing. We hope these chapters orders the things in a much better way so that the user get’s used to the class as
quick as possible.

To understand the functionality of itertree in practice the user might have a look on the related examples which can be
found in the example folder of itertree.

Status and compatibility information:

The original implementation is done in python 3.9 and it is tested under python 3.5 and 3.9. It should work for all
Python-versions >= 3.4.

From version 1.0.0 on we see the package as released and stable. The unit and integration test suite should target a
huge amount of functionalities and use cases. We will try to keep the interface stable too.

2.1 Quick start - the basics

We really hope that the usage of the itertree package is intuitive. If the user is familiar with /ist and dict objects the
basic functionality should be easy to understand. So don’t have any fears about all the details described in this tutorial
you can start quite quick and simple.

2.1.1 Build the object

Each tree item contains two sub-elements the value (data-object) that can be stored in the item and the subtree of
children. The base class that must be instanced to build the trees is i7ree and you can simply append sub-items.

>>> # Instance an iTree object by giving a tag, value and two subtree items_

— (children) :

>>> root = iTree('root', value=0, subtree=[iTree('item0', value=0), iTree('iteml', |,
—value=1)1])

>>> # append additional child with same tag!

>>> root.append (iTree('iteml', value={'valuel':2,'value2':3})) # any object can be_
—used as values

iTree('iteml', value={'valuel': 2, 'value2': 3})
>>> # list like operations are supported; e.g. insert():
>>> root.insert (2,iTree((1,2), value=3)) # any hashable object can be used as tag

iTree ((1, 2), value=3)

>>> # extend the tree by one more level
>>> root[l].append(iTree('sub_item0',0.1))
iTree('sub_item0', value=0.1)

(continues on next page)

itertree Documentation, Release 1.0.5

(continued from previous page)

>>> root[—-1].append(iTree('sub_item0',4.1))
iTree ('sub_item0', value=4.1)
>>> root.render ()
iTree ('root', value=0)
> iTree('item0', wvalue=0)
> iTree('iteml', value=1)
> iTree('sub_item0', value=0.1)
> iTree((1, 2), value=3)
> iTree('iteml', value={'valuel': 2, 'valuel2': 3})
> iTree('sub_item0', value=4.1)

Figure representing the resulting i7ree-object each item represented by a rounded box (left-side: tag-idx; right-side:
value object)

Note: IMPORTANT: In itertree you can append items with the same tag multiple times. Those items are collected in
a “tag-family”. As tag you can use any hashable object.

2.1.2 Access the items

Item access is possible via __getitem__(target) (usage via: my_tree[target]). The method supports different types of
targets and delivers returns related to those.

You can target a single item via absolute index or you can target it via tag-idx-key (this key is unique).

Note: The tag-idx-key is a tuple: (tag, family-index) . The family-index is the relative index of the item inside the
tag-family. Inside the iTree-object the children are ordered and they keep the same order inside their tag-family.

In case the target is only the tag (without the tag-family-index) the method will deliver the whole tag-family as a list
(multi-items-target).

>>> # Target a child in the tree via absolute index:

>>> root[1]

iTree ('iteml', value=1, subtree=[iTree('sub_item0', value=0.1)])
>>> # Target a child in the tree via tag-idx-key:

>>> root[('iteml',0)]

iTree('iteml', value=1l, subtree=[iTree('sub_item0', wvalue=0.1)1)

>>> item=root[('iteml',1l)] # given index is the tag-family index in this case
>>> item.idx # delivers absolute index of the item

3

(continues on next page)

8 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

(continued from previous page)

>>> item.tag_idx # delivers tag-index-key of the item

("iteml', 1)

>>> item.parent # delivers the parent object of the item

iTree ('root', value=0, subtree=[iTree('item0', value=0),...,1iTree('iteml', value={
—'valuel': 2, 'value2': 3}, subtree=[iTree('sub_item0', value=4.1)1)1])

>>> # 1if you give just the family tag without index the whole tag-family is given as_
—a list

>>> root['iteml']

[iTree('iteml', value=1l, subtree=[iTree('sub_item0', value=0.1)]), iTree('iteml',
—value={'valuel': 2, 'value2': 3}, subtree=[iTree('sub_item0', value=4.1)1)]

2.1.3 Iterate over the items

As the name of the package implies we have multiple iterators available.

>>> # Standard iterator over the children:
>>> [i.value for i in root]

[0, 1, 3, {'valuel': 2, 'value2': 3}]

>>> # iteration over items (like in dicts):
>>> [1 for i in root.items ()]

[(("itemO', 0), iTree('itemO', wvalue=0)), (('iteml', 0), iTree('iteml', wvalue=1,
—subtree=[iTree ('sub_item0', wvalue=0.1)]1)), (((1, 2), 0), iTree((1, 2), value=3)), ((
—'iteml', 1), iTree('iteml', value={'valuel': 2, 'value2': 3}, subtree=[iTree('sub_
—~item0', value=4.1)1))]

2.1.4 Copy and Compare

A copy of an iTree-objects implies a copy of all children. The compare operation == is an in-depth operation too
(compare all children and sub-children inside (same tags, values and order?)). But a match means “just” that we have
an equal object and not the same object-instance as we see:

>>> # Copy the iTree:

>>> new_tree=root.copy ()

>>> # compare:

>>> new_tree==root

True

>>> # and see we have different objects:
>>> new_tree is root

False

>>> # and all sub-items are copied too:
>>> new_tree[0] is root[0]

False

>>> new_tree[l1][0] is root[1][0]

False

2.1. Quick start - the basics 9

itertree Documentation, Release 1.0.5

2.1.5 In-depth operations

The itertree is a nested tree-structure and it supports in-depth operations out of the box. As we have already seen some
functions in the base-class contains direct in-depth support (we saw already copy(), == and now follows the important
function get()).

Additional in-depth functionalities (especially deep-iterators) can be found in the sub-class i7ree.deep.

>>> # To access items in-depth target_paths can be given as parameters to get ()

>>> target_item=root.get (('iteml',1),0) # target types can be mixed (e.g. tag-idx and_
—absolute index)

>>> # Get method delivers flatten lists in case multiple items are targeted (even in_
—higher levels)

>>> root.get ('iteml',0) # delivers all matches in deepest level!

[iTree ('sub_item0', value=0.1), iTree('sub_item0', value=4.1)]

>>> # other in-depth operation are found via .deep:# contains (target—-item of first_
—get operation):

>>> target_item in root # item is not a level 1 child!

False

>>> target_item in root.deep # but item is part of the tree (in-depth)

True

>>> # size:

>>> len (root)

4

>>> len (root.deep)

6

>>> # flatten iterators over all in-depth items:

>>> [i1i for i in root.deep] # up-down order

[iTree('item0', wvalue=0), iTree('iteml', value=1l, subtree=[iTree('sub_item0', wvalue=0.
—~1)1), iTree('sub_item0', value=0.1), iTree((1l, 2), value=3), iTree('iteml',6 value={
—~'valuel': 2, 'value2': 3}, subtree=[iTree('sub_item0', value=4.1)]), iTree ('sub_
—item0', value=4.1)]

>>> [i1i for i in root.deep.tag_idx_paths (up_to_low=False)] # tag idx related iterator;_
—down—-up order

[((('"itemO', 0),), 1iTree('itemO', wvalue=0)), ((('iteml', 0), ('sub_itemO', 0)), iTree(
—'sub_itemO0', value=0.1)), ((('iteml', 0),), iTree('iteml', value=1l, subtree=[iTree (
—'sub_itemO0', value=0.1)1)), ((((1, 2), 0),), iTree((1, 2), value=3)), ((('iteml',
—~1), ('sub_itemO', 0)), iTree('sub_itemO', wvalue=4.1)), ((('iteml', 1),), iTree(
—~'iteml', value={'valuel': 2, 'value2': 3}, subtree=[iTree('sub_item0', value=4.
—1)1))1

2.1.6 Save and load

The itertree package delivers a standard serializer which stores the iTree-object in a JSON formatted file. It supports
the serialization of more complex value-objects (e.g. numpy-arrays).

>>> # save tree to file

>>> root.dump ('dt.itz',overwrite=True) # returns the shal hash of the tree stored in,
—~the file

fb2a60c29acc2119363831ad1039c00836e55d15eb36955617d1c913£86dc8eb

>>> # load tree from file

>>> loaded_tree=iTree () .load('dt.itz")
>>> loaded_tree==root
True

Note: The iTree-class uses iterative and no recursive algorithms. The advantage is that the object will not raise Re-

10 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

cursionErrors even if user defines very deep trees (e.g. see the performance-analysis with a tree depth of 1000 levels).
To keep the functionality for the stored data the serializer creates a flat list of entries (which avoids RecursionErrors
related to the JSON parser).

2.1.7 Next steps

After those basic functions are learned you may be motivated to dive deeper. E.g. learn more about possible targets
related to item access, linking trees and branches, search/filter in the trees and store more advanced datatypes in the
tree.

In the tutorial you can find a large table which compares i7ree with dict and list objects (link can be found in next
chapter).

2.2 Introduction to the iTree object

As a starting point the iTree-class should be seen as a list (the object inherits his functions from a list or blist). All
typical list like methods are available. But iTree-objects supports also in-depth access and iterations over different
levels of the nested tree structure. Different than in normal lists the i7Tree-class supports the more dict-like access
functions related to keys too.

For a functional comparison in between iTree, list and dict the table in the chapter Comparison of the iTree object with
lists and dicts might be interesting for the reader.

2.2.1 Same tags and tag-families

The children items of a iTree-object with the same tag are collected in a related tag-family. Inside the family each
item contains a related index (relative index). The items can be targeted by giving the family-tag and the family-index
as a tuple. This fag_idx-pair is a unique key inside the children of a parent. Each item in a nested i7ree-structure
contains a unique fag_idx_path from the root object (or any parent (relative path)). The fag_idx_path property of an
item contains all zag_idx’s from the root item over all parents to the item itself (the rag_idx_path is represented by a
tuple of tag_idx items).

Beside this more key-like targeting we can target an item via the absolute index too (idx or idx_path). The access is
made here like it is known from lists. The idx_path is again represented as a tuple of index numbers.

It’s important that the user understands the difference between the absolute index and the family-index.
The things might getting clearer if we look into the order structure of an iTree-object:

The tree items of one level are ordered globally like in a /ist and the same order of items will be found in the tag related
family too. The order is not independent because an item which is a predecessor of another item in the tag-family will
be found before the item in the global order too. But from the global/absolute view there might be other items (with
other tags) inbetween. They are not seen in the family because they have other tags!

2.2. Introduction to the iTree object 11

itertree Documentation, Release 1.0.5

abs-order family ““a” family “b”
iTree(tag="a’,value=1) iTree(tag="a’,value=1)

iTree(tag="b’,value=2) iTree(tag="b’,value=2)
iTree(tag="a’,value=3) iTree(tag="a’,value=3)

iTree(tag="b’,value=4) iTree(tag="b’,value=4)

Normally the tag must be given to the item when it is instanced. As tag-objects the user can give any hashable object
(e.g. tuples, int, float, str, bytes). If no tag is given the iTree-object will use the default NoTag-object as tag. In iTree
exists a rename() method to change the tag of an item, but if possible this should be avoided because it implies a
reordering of the items inside the effected tag-families (removed tag and new tag).

2.2.2 Unique parent principle

We have one important limitation related to i7Tree objects, each one can only be the child of ONE PARENT ONLY!

If the users tries to append an iTree-object that is already a child of an iTree to another iTree a RecursionError will be
raised.

Only if the iTree referencing feature iLink() is utilized the share of same objects in different tree-sections is possible.

To avoid issues in some multi-item-functions implicit copies are created automatically (e.g.: my_tree.extend(itree) or
rearrangements via itree[I] itree[2 J==itree[2],itree[]] or multiplications like my_tree= itree * 10).

Note: The terms itree and my_tree are used as examples of instanced objects in this tutorial.

In case of implicit copies the objects copy()-method will be used. The method is an in-depth copy of all sub-items
(required because of one parent only principle) and the method creates also a copy of the stored value object (top-
level-only). It is an iterative equivalent to the operation:

new_itree=iTree (itree.tag, copy.copy (itree.value), subtree=[i.copy() for i in itree])

Warning: If it is required to keep the original objects the operations:
* multiplication of iTree-objects
* build iTree-object based of children of another iTree (e.g. new_tree=iTree(subtree=old_tree))
* rearrangements like itree[1] itree[2]==itree[2],itree[]]

must be avoided!

12 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

2.2.3 Naming conventions

In the itertree package and this tutorial the following naming convention is used:

e item An item is an iTree object that is a child (sub-element) of an iTree parent object somewhere inside the
nested tree structure.

» parent The current object can be the child of a specific parent or it has no parent. A child can have only one
parent. All parent related properties will deliver None in case no parent is coupled to the object (e.g.
itree.idx, itree.key, itree.parent, ...).

 child An iTree object that has a parent. This object is part of the parents children and it is related to the absolute
order of them and to its family siblings.

* root For nested children in sub-sub-trees the root is the top level parent. Any iTree object that has no parent is
a root object itself.

e family The group (list) of children in an iTree that have the same tag (The children have same order in the
family as in iTree-object (absolute order)).

» tag The tag is a object that defines that the item is part of a specific family. If no tag is given automatically the
NoTag object will be used as tag. The user can use any hashable object as a tag for an iTree-object.

 idx Specific (unique) index of a children related to the absolute order of the iTree’s children (list like access)

e tag-idx Specific (unique) tuple of family-tag and family-index of an “iTree” child (sometimes named tag-idx-
key).

* idx_path Specific (unique) tuple of indexes (index per level) describe the path from the root parent object to
the specific nested child somewhere deep in the iTree object. E.g (0,1,0) targets:

— 0. element (Ievel 0) ->
— 1. element (level 1) ->
— 0. element (level 2)

In access function the relative idx_path from the current object to the sub-item must be given (not the
absolute path (might be used if you target via itree.root.get(*idx_path))).

 tag_idx_path List of tag-idx-keys (unique tuples of family-tag,family-index) describe the path from the root
object to the specific nested child somewhere deep in the iTree object. E.g ((‘tagl’,0),(NoTag,1),(1.6,0))
targets:

— 0. element in tag-family ‘tagl’ (level 0) ->
— 1. element in tag-family NoTag (level 1) ->
— 0. element in tag-family 1.6 (level 2)

In access function the relative tag_idx_path from the current object to the sub-item must be given (not the
absolute path (might be used if you target via itree.root.get(*tag_idx_path))).

* target Is an object that targets one or multiple items in an iTree the target is used related to one level only. But
to reach deeper levels the user can create based on targets target_paths (list of targets).

The common access methods __getitem__() , get() are sensitive related to the given target and a related
object will be returned:

— Single target definitions deliver a single item.
— Multi target definitions deliver a list (or blist) of items.
Possible target definitions are:

— index - absolute target index integer (fastest operation) -> unique/single result

2.2. Introduction to the iTree object 13

itertree Documentation, Release 1.0.5

key - key tuple (family_tag, family_index) -> unique/single result
— tag-set - {family_tag} object targeting a whole family -> list result
— tag-sets - {family_tag,family-tag2,...} object targeting multiple families -> list result

— target-list - indexes or keys or other targets (mixed lists support). Selects items in same level based
given target-list -> list result

— index slice - slice of absolute indexes -> list result
— key slice - tuple of of (family_tag, family_index_slice) -> list result

— filter_method - a filtering method that delivers True/False related to an analysis of item properties ->
list result

— iter_method - if build-in iter is given a list of all children will be delivered (same like
list(itree.__iter__())

Ellipsis - if Ellipsis ... is given a list of all children will be delivered (same like itree/:])

* target-path The target-path is a list of targets and it is used for in-depth operations over the different nested
levels of the tree. Most often (e.g. get(*target_path)) the target-path is given as a pointer argument to the
method.

Note: Please understand the difference in between a target-list and a target_path.
— target-list -> targets items in the same level (siblings)
— target-paths -> targets items in different nested levels, this is an in-depth access

In the related methods (e.g. get()) target-list are given as one parameter but target_paths are given
as multiple parameters.

— itree.get([1,2,3])~[itree[1] itree[2], itree[3]] -> targets the children [1][2][3] in level 1

— itree.get(*[1,2,3])~itree[1][2][3] -> targets the item [1] in level 1, [2] in level 2 and [3] in
level 3

If the user defines a target-path like my_path=[[1,2],/0,1]] the object will be seen as a target_path
of target_list-targets. E.g. such a list can be used in my_tree.get(*my_path)) (give pointer). The
input is the same like get([1,2,3,4],/9,10]). The result of the request is a flatten iterator over
all matches in the deepest requested level but it will considering all multi-matches in the levels
inbetween too.

>>> root = iTree('root')

>>> root.append(iTree('a', value={'mykey': 1}, subtree=[iTree('al'),
—iTree('a2')1))

iTree('a', value={'mykey': 1}, subtree=[iTree('al'),iTree('a2')])
>>> root.append (iTree('a', value={'mykey': 1}, subtree=[iTree('al'),
—iTree('a2')1))

iTree('a', value={'mykey': 1}, subtree=[iTree('al'),iTree('a2')])

>>> root.get ([0, 1], [0, 11)
[iTree('al'), iTree('a2'), iTree('al'), iTree('a2')]

14

Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

Fig. 1: Figure showing the resulting iTree

 value The value is the a data-object that can be stored in a i7ree-object
Name extensions:

e s If plural is used in method names this is a hint that the method return will be an iterator: e.g.: itree.keys();
itree.values(); itree.items(); itree.deep.tag_idx_paths(); itree.deep.idx_paths()

» _path The extension is used for parameters and properties. This means that the parameter is an iterable that
targets the different levels of the nested structure (in-depth access). e.g. get(*target_path)

* filter_method A method that check the match of a iTree-item related to a property and the method delivers
True/False if an iTree-item is given as parameter. Therefore the method can be used for the filtering of
items.

Internal helper classes:

 .deep Helper class contains the in-depth functions that targets all elements inside the iTree-object. E.g. the
class contains different flatten iterators that iterates over all nested items of the i7Tree-object. The class
contains no __getitem__() method for in-depth item access because the function is already covered by the
standard get() and get_single() methods. The available gez()-method is the same as the get()-method in the
base class. (in detail: iTree full overview over the in-depth functionalities)

« .getitem Helper class that contains a lot of specific getitem methods f<or the different possible targets. (in
detail: Item Access)

2.2. Introduction to the iTree object 15

itertree Documentation, Release 1.0.5

2.3 Construction of an itertree

The first step in the construction of a itertree is to instance the main itertree class: iTree.

class itertree.iTree (tag=<class 'itertree.itree_helpers.NoTag'>, value=<class
itertree.itree_helpers.NoValue">, subtree=None, link=None, flags=0)

Instance the iTree object:

>>> iteml = iTree('iteml') # itertree item with the tag 'iteml'

>>> item2 = iTree('item2', 2) # instance a iTree-object with value content integer 2
>>> item2b = iTree('item2', {'mykey': 2}) # instance a iTree-object with a dict as_
—value content

>>> item3 = iTree() # instance an iTree-object with the default tag (==NoTag) and no_
—data content (==NoValue)

>>> root = iTree('root', subtree=[iteml, item2, item2b, item3])

>>> root.render ()

iTree ('root")

> iTree('iteml")

> iTree('item2', value=2)

> iTree('item2', value={'mykey': 2})
> iTree ()

Fig. 2: Figure showing the resulting iTree

To include iTree-objects as a children in a parent object we have several possibilities, those functionalities are compa-
rable to the same methods you find in /ist-objects.

>>> root = iTree('root')
>>> root.append (iTree('child")) # append a child
iTree ('child")
>>> # The append operation delivers the appended object back
>>> root += iTree('child") # alternative way to append a child
>>> root.append('value_content') # append a child with implicit iTree (tag=NoTag,
—value='value_ content')
iTree (value='value_content')
>>> root.insert (1, iTree('child', "inserted')) # insert the item in the given target,
—position (the insert is done in this target (index)
iTree ('child', value='inserted')
>>> # the old item with given target (index) will be moved in next position
>>> root.render ()
iTree ('root')
> iTree('child")
> iTree('child', value='inserted')
> iTree('child")
> iTree (value='value_content')
>>> root[0] = iTree ('newchild") # replace the child with index 0
>>> root.render ()

(continues on next page)

16 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

(continued from previous page)

iTree('root")
> iTree ('newchild")
> iTree('child', value='inserted')
> iTree ('child'")
> iTree (value='value_content')
>>> del root[('newchild', 0)] # deletes the child with key=('newchild',0) family-tag=
— 'newchild' and family-index=0
>>> root.render ()
iTree('root")
> iTree('child', value='inserted')
> iTree('child")
> iTree (value='value_content')
>>> del root[1] # deletes the child with absolute index 1
>>> root.render ()
iTree ('root")
> iTree('child', value='inserted')
> iTree (value='value_content')
>>> # The tag can be any hashable type!
>>> root.append (iTree (1)) # append a child with tag 1
iTree (1)
>>> root.append(iTree ((1, 2, 3))) # append a child with tag (1,2,3)
iTree ((1, 2, 3))
>>> root.append (iTree((1, 2, 3), 1)) # append a child with tag (1,2,3) and data,
—content 1
iTree((1, 2, 3), value=1)
>>> root.render ()
iTree('root")
> iTree('child', value='inserted')
> iTree (value='value_content')
> iTree (1)
> iTree((1, 2, 3))
> iTree((1, 2, 3), value=1l)
>>> new_itree = 1iTree ()
>>> root.append (new_itree)
iTree ()
>>> root.append(new_itree) # appending same object again will not work because_,
—parent 1s already set
Traceback (most recent call last):

RecursionError: Given item has already a parent iTree!

Remember if a tag is appended in an object where already exists a child with same tag this/those child/children will
not be overwritten! Furthermore all items with same tags are collected in the same tag-family:

>>> family=root[{(1,2,3)}] # target the family with a set(): {(1,2,3)}

>>> family # is represented as a list of the related items (with same tag)
[iTree((1, 2, 3)), iTree((1, 2, 3), value=1l)]

>>> family=root.get.by_tag((1,2,3)) # target via the s?ecial tag access function
>>> family # is represented as a list of the related items (with same tag)
[iTree((1, 2, 3)), iTree((1, 2, 3), value=1l)]

Additionally a huge set of methods is available for structural manipulations related to the children of a item.

itertree.iTree.append()
Append the given iTree-object to the iTree (new last child) The append() method is the fastest way to add a
single item to the end of the tree.

Except In case iTree-object has already a parent a RecursionError will be raised Other exceptions

2.3. Construction of an itertree 17

itertree Documentation, Release 1.0.5

might come up in case the iTree is protected (tree read-only mode).

Parameters item (Union[iTree, object])—iTree-object to be appended

Warning: In case the given item-object is not a iTree-object the item is interpreted as a
value and the iTree will be created implicit (with tag-family NoTag) in the way:

iTree(tag=NoTag, value=item) ~ iTree(value=item) If no item is given an empty iTree is
created tag="NoTag"; value="NoValue'.

>>> root=1iTree ('root'")

>>> root.append('myvalue')

iTree (value="myvalue')

>>> root.append() # append an empty iTree-object
iTree ()

Return type i7Tree

Returns Delivers the appended item itself (it might be useful for the user to get the updated infor-
mation of the object).

itertree.iTree._ _iadd__ ()
append the given item to the iTree (short form of append())

Except In case iTree-object has already a parent a RecursionError will be raised Other exceptions
might come up in case the iTree is protected (tree read-only mode).

Parameters other (Union[iTree, object]) - iTree-object to be appended.

Warning: As in append() in case the given item-object is not a iTree-object the item is
interpreted as a value and the iTree will be created implicit (with NoTag tag).

Return type iTree
Returns self

itertree.iTree.appendleft ()
Append the given iTree-object to the left of the parent-tree (new first child) The appendleft() method is the
recommended method to add a new first item to iTree (quicker than insert(0,item)). Compared to append() the
method is slower and the cache index information gets invalid after the operation (will be automatically updated
later on if required).

Except In case iTree-object has already a parent a RecursionError will be raised. Other exceptions
might come up in case the iTree is protected (tree read-only mode).

Parameters item (Union[iTree, object])—iTree-object to be appended as first item.

Warning: As in append() in case the given item-object is not a i7ree-object the item is
interpreted as a value and the iTree will be created implicit.

Return type iTree

Returns Delivers the appended item itself (it might be useful for the user to get the updated infor-
mation of the object).

18 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

itertree.iTree.extend()
We extend the iTree with given items (multi append). The function is high performant and if you have to append
a large number of items it is recommended to create an iterator of the items and feed them into this method.
This is quicker compared to a loop doing multiple normal append() operations.

Note: In case the to be extended items have already a parent an implicit copy will be made. We do this because
the internal copy can be created more effective. We accept also iTree-objects as extend_items parameter and the
children which have a parent will be automatically copied to be integrated in this second tree. We have the same
situation with a filtered iterator which might be used to extend this iTree too.

Parameters items (Iterable) — iterable-object that contains iTree-objects as items it can be:

iterator or generator of iTree-objects (using next)
iTree-object (children will be copied and extended in this tree)
iterable of iTree-objects (list, tuple, ...)

argument list for iTree-instance (“__init_ ()") (created by “get_init_args()” or
“get_init_args_deep()”) -> this is most often an internal functionality.

iterator or generator of value-objects (using next) - implicit iTree-objects created

iterable of value-objects (list, tuple, ...)- implicit iTree-objects created

itertree.iTree.extendleft ()
Multy item append on left hand-side (at the beginning) of the “iTree”.

The operation is slower than “extend()” because it requires a reordering of all items in the iTree.

Note: The order of extended items is kept in the operation. It’s comparable with: [1,2,3]+[4,5,6]=[1,2,3.4,5,6]"
but the result is not a new instance, self is kept.

Note: In case the to be extended items have already a parent an implicit copy will be made. We do this because
the internal copy can be created more effective. We accept also iTree-objects as extend_items parameter and the
children which have a parent will be automatically copied to be integrated in this second tree. We have the same
situation with a filtered iterator which might be used to extend this i7ree too.

Parameters items (Iterable) — iterable-object that contains iTree-objects as items it can be:

iterator or generator of i7Tree-objects (using next)
iTree-object (children will be copied and extended in this tree
iterable of iTree-objects (list, tuple, ...)

argument list for iTree-instance (“__init_ ()") (created by “get_init_args()” or
“get_init_args_deep()”)

iterator or generator of value-objects (using next) - implicit iTree-objects created

iterable of value-objects (list, tuple, ...)- implicit i7ree-objects created

itertree.iTree.insert ()
Insert an item before a given target-position. The insertion works like in lists.

The insertion operation is slower as the append operations.

2.3. Construction of an itertree 19

itertree Documentation, Release 1.0.5

If target=None is given the operation inserts in the last position (== append()).

Except In case iTree-object has already a parent a RecursionError will be raised Other exceptions
might come up in case the iTree is protected (tree read-only mode).

Parameters

* target (Union[Integer, tuple,iTree, None]) — target position definition; tar-
get must target a single/unique item! Possible targets:

— index - absolute target index integer, negative values supported too (count from the end).

key - key-tuple (family_tag, family_index) pair

item - iTree-item that is already a children (future successor)
— None - if None is given we will append the item in the last position of the “iTree’-object

* item (Union[iTree, object])—iTree-object to be inserted in the tree.

Warning: As in append() in case the given item-object is not a iTree-object the item is
interpreted as a value and the i7ree will be created implicit.

Return type i7ree

Returns Delivers the inserted item itself (it might be useful for the user to get the updated informa-
tion of the object).

itertree.iTree.move ()
Move this item in given target position (item will be positioned before the given target). The given target must
be a unique item! If None is given the item will be moved in the last position of the iTree. If an iTree -object is
given as target it must be a children of the same parent (sibling).

Except LookupError in case the target is not found or not unique!

Parameters target (Union[Integer, tuple, iTree, None]) — target-object defining the
replacement target; possible types are:

* index - absolute target index integer, negative values supported too (count from the end).

* key - key-tuple (family_tag, family_index) pair

* item - iTree-item that is already a children (future successor)

* None - if None is given we will move the item to the last position in the “iTree -object
Returns self (with updated indexes)

itertree.iTree.rename ()
give the item a new family tag

The renaming of the item implies a reordering of the items in the tree because the family order depends on the
global/absolute order of items.

Parameters new_tag (Hashable)—new tag (any kind of hashable object)
Return type iTree

Returns Delivers the renamed item itself (it might be useful for the user to get the updated informa-
tion of the object).

itertree.iTree.pop ()
pop the item out of the tree, if no key is given the last item will be popped out

We do not have the method popleft because pop(0) does the same.

20 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

Parameters target (Union[int, tuple, Hashable, Iterable,slice,1iTree]) — tar-
get of popped item(s):

* index - absolute target index integer (fastest operation)

* key - key tuple (family_tag, family_index)

* tag - Tag(family_tag) object targeting a whole family

* target-list - absolute indexes or keys to be replaced (indexes and keys can be mixed)
* index-slice - slice of absolute indexes

* key-slice - tuple of (family_tag, family_index_slice)

* itree_filter - method (callable) for filtering the children of the object

Returns popped out item(s) (parent will be set to None). In case multiple items are removed an
iterator over the removed items is given.

2.4 iTree other structure related commands

itertree.iTree.__ _setitem ()
Replace an item with the given new item given in the value-parameter. The method handles also multiple
replaces (rearrangements) like:

>>> mytree[l],mytree[0]=mytree[0],mytree[l]

Warning: Because of the parent only principle in rearrangements operations an implicit copy might be
created.

Note: Linked items cannot be changed. If changes are required The user must change the link source tree items
and afterwards actively rerun load_links() to reload the linked tree.

Except In case the target is not found or the iTree is protected (read-only tree).
Parameters

* target — target object defining the replacement target; possible types are:

index - absolute target index integer (fastest operation)

key - key tuple (family_tag, family_index)

tag - Tag(family_tag) object targeting a whole family

target-list - absolute indexes or keys to be replaced (indexes and keys can be mixed)

index slice - slice of absolute indexes

— key slice - tuple: (family_tag, family_index_slice)
For multi targets the given value must have a matching structure (item list with same length).
We have two special targets which are used for placing/replacing single items in the iTree:

— Ellipsis ... - new_items tag-family will be deleted and the new-item is placed in families
first item position

2.4. iTree other structure related commands 21

itertree Documentation, Release 1.0.5

— items_tag - new_items tag-family will be delted and the new-item is placed in families
last item position

If those two special targets are used and the new-items family does not exist yet, the method
will just append the new item, no exception will be raised.

* value - iTree object that should replace the target or in case of multi targets a tuple of
items that should be used for replacements

Returns value added items (only for internal usage)

itertree.iTree._ delitem_ ()
The function deletes the targeted item in the tree.

Except In case the target is not found or the i7ree is protected (read-only tree).

Parameters target (Union[int, tuple, Hashable, Iterable, slice]) — target object
defining the replacement target; possible types are:

* index - absolute target index integer (fastest operation)
* key - key tuple (family_tag, family_index)
* tag - Tag(family_tag) object targeting a whole family
* target-list - absolute indexes or keys to be replaced (indexes and keys can be mixed)
* index-slice - slice of absolute indexes
* key-slice - tuple of (family_tag, family_index_slice)
* itree_filter - method (callable) for filtering the children of the object
Returns deleted item

itertree.iTree.clear ()
deletes all children and the value!

All flags stay unchanged, except the load_links flag!
Parameters
* keep_value (bool)—
— True - value is not deleted
— False - value will be replaced with NoValue
* local_only (bool)—
— True - clear only the local items

— False - clear whole object (The object is reset to the no links loaded state and locals are
deleted)

itertree.iTree.copy ()
create a copy of this item

The difference in between copy() and deepcopy() for iTree is just that we do in deepcopy() a deepcopy of all
value items. In copy() we just copy the value object not the items inside, the pointers to the original objects are
kept (for immutable objects there is no difference).

Returns copied iTree object

itertree.iTree.copy_keep_value ()
Create a copy of this item.

22 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

The difference in between normal copy() and this method is that the value objects are completely untouched in
this operation (for immutable objects there is no difference in between the two copy operations).

Returns copied iTree object

itertree.iTree.deepcopy ()
create a deepcopy of this item

The difference in between copy() and deepcopy() for iTree is just that we do in deepcopy() a deepcopy of all
value items. In copy() we just copy the value object not the items inside, the pointers to the original objects are
kept (for immutable objects there is no difference).

Returns deep copied new iTree object

The copy operations are automatically in-depth operations this means the items in the subtree will be copied too.
This is required because of the one parent only principle. The available copy operations making a difference in the
treatment of the itree.value-object:

* copy() - creates a top-level copy of the value object
* copy_keep_values() - copies just the iTree object but keep the value
* deepcopy() - creates a deepcopy of the value object

The methods of the copy package use the same functionalities copy.copy(itree) ~ itree.copy() and copy.deepcopy(itree)
~ itree.deepcopy().

>>> import copy

>>> itree = iTree('root',value={'a':[1,2,3]1})

>>> copiled_itree=itree.copy ()

>>> iTree (itree.tag,value=copy.copy (itree.value)) # root only copy (subtree_
—eliminated)

iTree('root', wvalue={'a': [1, 2, 31})

>>> copiled_itree.value is itree.value

False

>>> copied_itree.value['a'] is itree.value['a']

True

>>> deepcopied_itree=itree.deepcopy () # Inner values objects will be copied too

>>> deepcopied_itree_extern=iTree (itree.tag,value=copy.deepcopy (itree.value))
>>> deepcopied_itree.value is itree.value

False

>>> deepcopied_itree.value['a'] is itree.value['a']

False

>>> itree_only_copy=itree.copy_keep_value() # values will be taken over without copy

>>> itree_only_copy_extern=iTree (itree.tag,value=itree.value)
>>> itree_only_copy.value is itree.value
True

Some of the structural manipulation commands can be utilized also as an in-depth variant which will run over the
nested iTree-structure. Use the helper class .deep for this propose.

itertree.iTree.rotate()
Rotate children of the iTree-object n times (n positions) (rotate 1 times means move last item to first position)

If no parameter is given we rotate by one position only.
The rotation can be made in negative direction too (give negative numbers).

In case zero is given the operation is neutral and nothing will be changed.

Note: There is no in-depth counterpart of this method available.

2.4. iTree other structure related commands 23

itertree Documentation, Release 1.0.5

Parameters n (integer)—number of positions the items should be rotated

itertree.iTree.reverse ()
Reverse the order of all children in the iTree.

If you do not want to change the object itself (in place operation) you might use the iterator reversed() instead.
itertree.iTree.deep.reverse ()
coded in helper-class:

itertree.itree_indepth._iTreeIndepthTree.reverse ()
Call via iTree().deep.reverse()

In-depth reverse of the order of all children in the iTree. Same as method reverse() but this is the in-depth version
of the method. This method dives deeper and the sub-children, sub-sub-children, ... orders are reversed too.

Note: The implementation of this method is recursive for deep trees recursion limit might be reached.

itertree.iTree.sort ()
Sorting operation -> same behavior as sort of lists (parameter description is taken from list documentation).

Note: This is an “in place” operation which changes the content of the object the build-in sorfed() might be use
instead (if the original object should not be changed):

>>> a=iTree (subtree=[iTree (3),iTree(2),1Tree(4),iTree(1)1])
>>> a.render ()

iTree ()

> iTree (3)

> iTree (2)

> 1iTree (4)

> iTree (1)

>>> b=iTree (subtree=(a[i] for i in sorted(a.keys())))

Internally in this operation a copied sorted list is created, and afterwards the whole structure is cleared and
rebuild based on the sorted list.

The default-operation is to the sort based on the list of keys (tag-family, family_index) pair of the items. The
base of the sorting can be modified by changing the farget_type parameter.

Parameters

* key - specifies a function of one argument that is used to extract a comparison key from
each list element (for example, key=str.lower). The key corresponding to each item in the
list is calculated once and then used for the entire sorting process. The default value of None
means that list items are sorted directly without calculating a separate key value.

* reverse — is a boolean value. If set to True, then the list elements are sorted as if each
comparison were reversed.

itertree.iTree.deep.sort ()

coded in helper-class:

24 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

itertree.itree_indepth._iTreeIndepthTree.sort ()
Call via iTree().deep.sort()

sort operation running also over the deeper levels of the tree -> same behavior as sort of lists (parameter descrip-
tion is taken from list documentation)

In this operation internally a copied sorted list is created, the structure is cleared and rebuild based on the sorted
list. The default-operation is to the sort based on the list of keys (tag-family.family_index) pair of the items.
This might be modified by changing the target_type.

Warning: In case of really deep iTree’s (depth >100) the sorting might take a lot of time. We made a test
with an “iTree containing ~2500 items and a depth of 9000. Result was: itree.all.sort() time: 83.772834 s
(Python 3.9).

Note: The implementation of this method is recursive for deep trees recursion limit might be reached.

Parameters

* key — specifies a function of one argument that is used to extract a comparison key from
each list element (for example, key=str.lower). The key corresponding to each item in the
list is calculated once and then used for the entire sorting process. The default value of None
means that list items are sorted directly without calculating a separate key value.

* reverse — is a boolean value. If set to True, then the list elements are sorted as if each
comparison were reversed.

Additionally we support following rearrangement functions:

>>> root[0], root[l], root[2] = root[2], root[0], root[l]
>>> root[0:3] = root[2], root[0], root[l]
File "<string>", line 1
root[0:3] = root[2], root[0], root[l]

A

SyntaxError: invalid syntax
During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "E:\projects\privat\itertree\src\itertree\examples\itree_docu_examples.py",
—line 130, in exec_and_print
exec (command)
File "<string>", line 1, in <module>
File "E:\projects\privat\itertree\src\itertree\itree_main.py", line 1441, in ___
—.setitem_
return [it_setitem(old_items[i].idx, new) for i, new in enumerate (value)]
File "E:\projects\privat\itertree\src\itertree\itree_main.py", line 1441, in
—<listcomp>
return [it_setitem(old_items[i].idx, new) for i, new in enumerate (value)]
File "E:\projects\privat\itertree\src\itertree\itree_main.py", line 1473, in ___
—.setitem_
old_item_idx = family[O0].idx
IndexError: list index out of range

>>> root[2], root[0], root[l] = root[0:3]

2.4. iTree other structure related commands 25

itertree Documentation, Release 1.0.5

There might be cases where those in-place rearrangements might not work (We have not tested all possible combina-
tions here) and be aware that in this kind of operations it can be that there are implicit copies (same as itree.copy()) of
the original object-instances created.

In the following pseudo mathematical operations the result will always be a new iTree instance. Flags are not consid-
ered in those operations. Addition and multiplication is not permutable because the first object gives the tag,value for
the resulting object!

The addition of iTree’s is possible the result contains always the properties of the first added item and the children of
the second added item are appended to the items of the fiorst one by creating a copy.

>>> a = iTree('a', value={'mykey': 1}, subtree=[iTree('al'), iTree('a2')])
>>> b = iTree('b', subtree=[iTree('bl'"), iTree('b2')1)
>>> itree = a + b

>>> repr (itree) # repr() is required to get the un-shorten representation of iTree,,
— (str () shortens the subtree-parameter)

iTree('a', value={'mykey': 1}, subtree=[iTree('al'), 1iTree('a2'), iTree('bl'), iTree(
—'b2')1)

(‘al',) (a2, 0) ('bl', 0) ('b', 0)

Fig. 3: Figure showing the resulting iTree

Multiplication of a iTree is possible too the result is a list of iTree copies of the original one.

>>> itree_list = iTree('a') x 1000 # creates a list of 1000 copies of the original
—~iTree

>>> itree_list[0]==itree_list[l] # items are equal

True

>>> jtree_list[0] is itree_list[1l] # but we have different instances
False

>>> root = iTree('root')

>>> root.extend(iTree('a') = 10000) # append all 10000 items as children to root
>>> len (root)

10000

In case two iTree-objects are multiplied in the result each children of first will be mixed with the children of the second
in the scheme: child1_0,child2_0,child1_O,child2_1,...child1_1,child2_0,child1_1,child2_1...

>>> itreel=iTree('one', 1, [iTree(1.0),iTree(1.1),1iTree(1.2)1])
>>> itree2=iTree('two', 1, [iTree(2.0),iTree(2.1),1iTree(2.2)1])
>>> itree_mul=itreelxitree2
>>> itree_mul.render ()

iTree ('one', value=1)

> iTree (1.
iTree (2.
iTree
iTree

vV V V V
o R O O O~

(
(1
(2.
iTree (1

(continues on next page)

26 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

(continued from previous page)

iTree
iTree
iTree
iTree
iTree
iTree
iTree
iTree
iTree
iTree
iTree
iTree

V VVVV VYV YV V VYV VYV
NEFEPNREPENMNENDMEDNDEDNDREN
NN NMNONNE R P ORFRN

iTree

Fig. 4: Figure showing the resulting iTree after multiplication

The subtraction of two iTrees is supported too. The base of operation is the tag_idx of the items. Items with same
tag_idx are eliminated (only in case they have same value too). With different values we try to calculate the the
difference of the value objects if this is not possible the value will kept unchanged (value of the minuend is kept).

>>> itreel=iTree('one', 1, [iTree('a',1.0),iTree('a',1.1),iTree('a’', 'str')])

>>> itreel[0]-itreel[l] # same tage different value -> diff of value is calculated,
— (i1f possible)

iTree (value=-0.10000000000000009)

>>> itreel[0]-itreel[2] # same tage different value -> diff not possible minuend is,,
—kept

iTree (value=1.0)

>>> sub_tree=itreel-itreel # minus same object

>>> sub_tree.tag # tag eliminated

<class 'itertree.itree_helpers.NoTag'>

>>> sub_tree.value # value eliminated

<class 'itertree.itree_helpers.NoValue'>

>>> sub_tree.render () # subtree eliminated

iTree ()

Subtraction of same iTree delivers an empty iTree object (tag=NoTag; value=NoValue).

2.5 ltem Access

In this chapter we will dive in the “magic” of the i7ree.get object.

The user can choose in between the common and the specific target access. The common access is more flexible
related to the possibility of giving mixed target_paths and it is a bit more “lazy”. The specific access should be used
if the quickest possible access is required (depending on the given target type it is ~2-6 times quicker compared to
the common access). And it can be that the specific access is needed because of conflicting target content (e.g. if
an integer tag is used in iTree, it cannot be reached via common access because the target will be interpreted as an
absolute index access (higher priority the tag access))

Note: The common target access is also used when ever a item must be targeted in other functionalities like move()

2.5. ltem Access 27

itertree Documentation, Release 1.0.5

or insert()!

For common target access we have the following methods:

itertree.iTree.__getitem ()

Main common get method for children (first level items).

In case the given targets is a absolute index or a key (tag,family-index) pair the method will deliver a unique
item back. This operation is prioritized over the other operations.

For all other targets the method will deliver a list with the targeted items as result.

In some cases an empty list might be delivered and no exception might be raised (e.g. filter query delivers no
match).

In case user likes to have other return-types he might check the other available get methods (get(), get.single(),
get.iter()) or he might also use the itertree helper method getter_to_list() to convert any of the possible results
into a list.

Except In case of no match (even if a part is not matching (e.g. one index in an index-list) the
method will raise a KeyError (no matching target given); IndexError (no matching index given)
or ValueError (no valid type of target given).

Parameters target (Union[int, tuple, list, slice]) — target object targeting a child or
multiple children in the “iTree”. Possible types are:

* index - absolute target index integer (fastest operation)

* key - key tuple (family_tag, family_index)

* index-slice - slice of absolute indexes

* key-index-slice - tuple of (family_tag, family_index_slice)

* target-list - absolute indexes or keys to be replaced (indexes and keys can be mixed)
* key-index-list - tuple of (family_tag, family_index_list)

* tag - family_tag object targeting a whole family

* tag-set - a set of family-tags targeting the items of multiple families

* itree_filter - method (callable) for filtering the children of the object

e all-children - if build-in iter or ... ‘(Ellipsis) is given a list of all children will be given (same
like list(itree.__iter__()))

Return type Union[i77ee,list]

Returns Target was index or key -> one iTree item will be given; for all other targets a list will be
delivered.

itertree.iTree.get ()

coded in helper-class:

itertree.itree_getitem._iTreeGetitem.__call__ ()

Call via iTree().get()
Main get method for items that supports in-depth level-wise access too.

If only one parameter is given get behaves like __getitem__() except that a default parameter can be given so
that it will be delivered (the normal method would raise an exception in this case). In case no default is given
the exception will be raised too.

28

Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

Warning: The default parameter must be given as a keyword argument only e.g.:get(I,default=None). All
unnamed arguments given will always be interpreted as a target definitions!

In case the method got more than one unnamed argument an in-depth target access will be performed. Each
parameter will target in this case the next nested level of the tree.

The method can be seen as a replacement of the operation selfftarget_deep[0]][target_deep[1]]... [target_deep]-
1]]

Note: But be aware that the results in the different levels might not be unique and therefore in detail the method
will behave different as the simple direct targeting (which will raise an exception in this case). This method will
create an iterator of all (branched) findings in the deepest targeted level instead.

In this case the method will deliver an iterator of all the findings in the mostlowest level targeted. The iterator is
always flatten even that in higher levels we might have multiple findings.

E.g. the user might have build a tree like this:

>>> root_tree.render ()
iTree ('root', wvalue=0)
> iTree ('sub', value=1)
> iTree ('subsub', value=5)
> iTree ('subl', value=2)
> iTree ('subsub', value=6)
> iTree('sub2', value=3)
> iTree ('subsub', value=7)
> iTree('sub', value=4)
> iTree ('subsub', value=8)
>>> get ('sub', 'subsub')
[iTree ('subsub', value=5), iTree('subsub', value=8)]

The reason for this result is that the first match is not unique and so the sub-items in the target levels are combined
into on flatten result.

The return of this method can be the following:
1. Pure index and key list is given -> single target -> iTree object should be delivered
2. list of all found items
3. No match found an KeyError or IndexError will be raised
Except In case no matching item is found a KeyError or IndexError is raised. In case of invalid
targets TypeError or ValueError will be raised.
Parameters

* target (Union[int, tuple, list,slice])— level O target object targeting a child
or multiple children in the “iTree”. Possible types are:

index - absolute target index integer (fastest operation)

key - key tuple (family_tag, family_index)

index-slice - slice of absolute indexes

key-index-slice - tuple of (family_tag, family_index_slice)

target-list - absolute indexes or keys to be replaced (indexes and keys can be mixed)

2.5. ltem Access 29

itertree Documentation, Release 1.0.5

key-index-list - tuple of (family_tag, family_index_list)

tag - family_tag object targeting a whole family

tag-set - a set of family-tags targeting the items of multiple families

itree_filter - method (callable) for filtering the children of the object

all-children - if build-in iter() or ... (Ellipsis) is given a list of all children will be given
(same result as list(itree.__iter__()))

* xtarget_path — in-depth targets iterable of targets for the different levels 1-n The sup-
ported targets in each level are (same like __getitem__():

index - absolute target index integer (fastest operation)

— key - key tuple (family_tag, family_index)

— index-slice - slice of absolute indexes

— key-index-slice - tuple of (family_tag, family_index_slice)

— target-list - absolute indexes or keys to be replaced (indexes and keys can be mixed)
— key-index-list - tuple of (family_tag, family_index_list)

— tag - family_tag object targeting a whole family

— tag-set - a set of family-tags targeting the items of multiple families

— itree_filter - method (callable) for filtering the children of the object

all-children - if build-in iter() or ... (Ellipsis) is given a list of all children will be given
(same result as list(itree.__iter__()))

* default - The parameter must be given as keyword parameter! The object given will be
delievred in case of issues. If the parameter is not set (==Exception) exceptions will be
raised in case of issues.

Return type Union[i7ree,list]

Returns iTree object or list of objects

itertree.iTree.get.single ()
coded in helper-class:

itertree.itree_getitem._iTreeGetitem.single ()
Call via iTree().get.single()

In general the methods does same like the “normal” get() but the method delivers only single (unique) results.
In case get() delivers multiple items this method will raise an Exception or delivers the default value (if defined).

Note: In case the match contains a list with only one element the result is unique too. The method will unpack
the unique item from the iterable and return it in this case.

Except If default parameter is not set an KeyError or IndexError will be raised. If result is not unique
a ValueError will be raised

Parameters

* target (Union[int, tuple, 1ist, slice]) - level O target object targeting a child
or multiple children in the “iTree”. Possible types are:

30 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

— index - absolute target index integer (fastest operation)

— key - key tuple (family_tag, family_index)

— index-slice - slice of absolute indexes

— key-index-slice - tuple of (family_tag, family_index_slice)

— target-list - absolute indexes or keys to be replaced (indexes and keys can be mixed)
— key-index-list - tuple of (family_tag, family_index_list)

— tag - family_tag object targeting a whole family

— tag-set - a set of family-tags targeting the items of multiple families

— itree_filter - method (callable) for filtering the children of the object

— all-children - if build-in iter() or ... (Ellipsis) is given a list of all children will be given
(same result as list(itree.__iter__()))

* xtarget_path — in-depth targets iterable of targets for the different levels 1-n The sup-
ported targets in each level are (same like __getitem__():

— index - absolute target index integer (fastest operation)

— key - key tuple (family_tag, family_index)

— index-slice - slice of absolute indexes

— key-index-slice - tuple of (family_tag, family_index_slice)

— target-list - absolute indexes or keys to be replaced (indexes and keys can be mixed)
— key-index-list - tuple of (family_tag, family_index_list)

— tag - family_tag object targeting a whole family

— tag-set - a set of family-tags targeting the items of multiple families

— itree_filter - method (callable) for filtering the children of the object

— all-children - if build-in iter() or ... (Ellipsis) is given a list of all children will be given
(same result as list(itree.__iter__()))

default (object) — If parameter is set in case of no match the default object will be
delivered. If parameter is not set an Exception will be raised

Return type Union[i77ee,object]

Returns found single item or default (in case default is set)

itertree.iTree.get.iter ()
coded in helper-class:

itertree.itree_getitem._iTreeGetitem.iter ()
Method call via iTree().get.iter()

In general the methods does same like the “normal” gef() but the method delivers an iterator results. In case
get() delivers a single items this method will deliver [item].

If no match is found will be delivered the default value (if defined).

If no target is given [self] will be delivered.

2.5. ltem Access 31

itertree Documentation, Release 1.0.5

Warning: It can be that an empty iterator is delivered and no Exception is raised in this case!

Note: In case the target item should be iterated afterwards this method is recommended because some opera-
tions are quicker then the standard get().

Except If default parameter is not set an KeyError or IndexError will be raised. If result is not
unique a ValueError will be raised.

Parameters

* target (Union[int, tuple, 1ist, slice]) - level O target object targeting a child
or multiple children in the “iTree”. Possible types are:

index - absolute target index integer (fastest operation)

key - key tuple (family_tag, family_index)

index-slice - slice of absolute indexes

key-index-slice - tuple of (family_tag, family_index_slice)

target-list - absolute indexes or keys to be replaced (indexes and keys can be mixed)
key-index-list - tuple of (family_tag, family_index_list)

tag - family_tag object targeting a whole family

tag-set - a set of family-tags targeting the items of multiple families

itree_filter - method (callable) for filtering the children of the object

all-children - if build-in iter() or ... (Ellipsis) is given a list of all children will be given
(same result as list(itree.__iter__()))

xtarget_path — in-depth targets iterable of targets for the different levels 1-n The sup-

ported targets in each level are (same like __getitem__():

index - absolute target index integer (fastest operation)

key - key tuple (family_tag, family_index)

index-slice - slice of absolute indexes

key-index-slice - tuple of (family_tag, family_index_slice)

target-list - absolute indexes or keys to be replaced (indexes and keys can be mixed)
key-index-list - tuple of (family_tag, family_index_list)

tag - family_tag object targeting a whole family

tag-set - a set of family-tags targeting the items of multiple families

itree_filter - method (callable) for filtering the children of the object

all-children - if build-in iter() or ... (Ellipsis) is given a list of all children will be given
(same result as list(itree.__iter__()))

default (object) — If parameter is set in case of no match the default object will be

delivered. If parameter is not set an Exception will be raised

Return type Union[list,blist,Iterator]

Returns An iterator or a list with a single item will be delivered

32

Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

The first method __getitem__() targets first level only (access via “brackets-operation” itree[]). All other methods are
capable to target via in-depth access (realized via multiple parameters that can be given to the method).

Warning: The usage of target_paths are just supported by the get-subclass. The following methods supporting
target-paths containing mixed target-items (different types):

> get()
o get.single()
* get.iter()

The other methods in get-subclass support only target-paths with unique targets (matching to the specific method).

The method __getitem__() does not support target-paths it just takes targets targeting the level 1 children only!

The return type of the common access functions __getitem__ () and “get() depends on the given target-type:
* absolute index, key (family tag-index pair) -> unique iTree-item will be delivered
« all other targets (multi target operations) -> list of matching items (in some case a blist object might be delivered)
The get.single() method delivers only single iTree-objects and get.iter() delivers an iterator of the matches found.
For the specific access the following methods are available:
itertree.iTree.get.by idx()
coded in helper-class:

itertree.itree_getitem._iTreeGetitem.by_ idx ()

Call via iTree().get.by_idx()
Get items by absolute index.
This is the quickest getter function we have in iTree . As parameters the user can give just integers.
For in-depth operations the user can give an index-path (pointer).
Parameters
e idx (int) - first item index

* xidx_path - in case we have a in-depth operation we use index path and first given idx
will be integrated in the operation (give level 1- n index)

* default (object) - This is a named parameter only! If default is given the default objet
will be returned in case of internal exceptions. If default is Exception an exception is raised

Return type iTree

Returns target item
itertree.iTree.get.by_idx slice()
coded in helper-class:

itertree.itree_getitem._iTreeGetitem.by_ idx_slice()
Call via iTree().get.by_idx_slice()

Get items by absolute index slice.

For in-depth operations the user can give multiple parameters (a slices per level). The findings are combined to
a final flatten list.

The operation can be mixed with normal indexes.

2.5. ltem Access 33

itertree Documentation, Release 1.0.5

Note: If the user likes to target all items in a level he can give the slice(None) object which will iterate over all

children of the level

To target a single item slice(n,n+1) must be given.

Parameters

* idx_slice (slice) — absolute index slice for level 0 access (a slice object must be
given!)

* xidx_path — Give multiple parameters (one slice per level)

* default (object) - This is a named parameter only! If default is given the default objet
will be returned in case of internal exceptions. If default is Exception an exception is raised

Return type list

Returns list of target iTree-items

itertree.iTree.get.by_idx list ()

coded in helper-class:

itertree.itree_getitem._iTreeGetitem.by_ idx_list ()

Call via iTree().get.by_idx_list()
Get items via absolute index lists.

For in-depth operations the user can multiple parameters (one parameter per level) each parameter must be an
absolute index list.The findings are combined to a final flatten list.

Note: The user can give ... (Ellipsis) to target all children in a specific level

Parameters
e idx_1list (1ist) - list of absolute indexes targeting level O
* xidx list_path — Give multiple parameters (one index list per level)

» default (object) - This is a named parameter only! If default is given the default objet
will be returned in case of internal exceptions. If default is Exception an exception is raised

Return type list

Returns list of targeted iTree-items

itertree.iTree.get.by_tag_idx()

coded in helper-class:

itertree.itree_getitem._iTreeGetitem.by_tag_idx()

Call via iTree().get.by_tag idx()
Get items by tag-idx-key (tag,family-index) tuple.

This is the quickest getter function available for tag-idx access (comparable to keys in dicts) we have in iTree.
The parameters must be (tag, family-idx) tuples.

For in-depth operations the user can give a tag_idx_path. In this case the methods dives into the tree and extracts
the matching items in the different levels

34

Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

Parameters
* tag_idx (tuple) — level one tag-idx-key

* xidx path - In-depth parameters each additional parameter must be a tag-idx-key target
the item in the specific level

* default (object)— This is a named parameter only! If default is given the default objet
will be returned in case of internal exceptions. If default is Exception an exception is raised

Return type i7ree

Returns targeted item
itertree.iTree.get.by_tag idx slice()
coded in helper-class:

itertree.itree_getitem._iTreeGetitem.by_ tag_idx_slice()
Call via iTree().get.by_tag idx_slice()

Get items via tag_idx_key containing a slice in the family index tuple(tag,family-index-slice). The user must
give here a slice object.

For in-depth operation additional tag_idx_keys containing slices can be added. To target a whole family the user
may give the slice(None). The results in the different levels are merged to a flatten list containing all matches in
the highest targeted level.

Parameters
* tag_idx_slice (tuple) - tuple of tag and family-index-slice
* xtag_idx_path — Give additional tag-idx-slices per target level in-depth of the iTree

* default (object)— This is a named parameter only! If default is given the default objet
will be returned in case of internal exceptions. If default is Exception an exception is raised

Return type list

Returns list of targeted iTree-items
itertree.iTree.get.by_tag idx list ()
coded in helper-class:

itertree.itree_getitem._iTreeGetitem.by tag_idx list ()
Call via iTree().get.by_tag idx_list()

Get items by giving a tag-family-index-list tuple.

For in-depth operation the user can add more tag-family-index-list tuples as additional parameters targeting the
in-depth levels of the iTree object.

To target all family items of a specific level the ,,,-object” (Ellipsis) can be placed as parameter.
Parameters

* tag_idx_list (tuple) — tuple of tag and a list of family-indexes (e.g. (‘my-
tag’,[1,2,3]))

* xtag_idx_list_path — Additional parameters each containing a tuple with tag and a
list of indexes for each in-depth level of the iTree

* default (object) - This is a named parameter only! If default is given the default objet
will be returned in case of internal exceptions. If default is Exception an exception is raised

Return type list

2.5. ltem Access 35

itertree Documentation, Release 1.0.5

Returns list of targeted iTree-items
itertree.iTree.get.by_tag/()
coded in helper-class:

itertree.itree_getitem._iTreeGetitem.by_ tag()
Call via iTree().get.by_tag()

Get family items by given tag.
This is the quickest getter function for families.

For in-depth operation the user can give as additional parameters more tags (one tag per level). The findings are
cumulated and delivered as a flattened item list.

Parameters
* tag (hashable) — Family tag targeting all items inside the family
* xtag_path — hashable tags targeting the deeper levels of iTree

* default (object) - This is a named parameter only! If default is given the default objet
will be returned in case of internal exceptions. If default is Exception an exception is raised

Return type list

Returns list of targeted iTree-items
itertree.iTree.get.by_tags ()
coded in helper-class:

itertree.itree_getitem._iTreeGetitem.by_tags()
Call via iTree().get.by_tags()

Here the user gives an iterable of tags for the to be targeted families (multiple families). The targeted items are
combined in one list.

For in-depth operation the user can give additional parameters containing tag-iterables per target levels. The
result is cumulated and delivers all found items in the deepest targeted level.

The user might give also single tags (but it’s recommended to put them in a list -> see the warning).

Warning: Tuples are interpreted as iterables in this case! If the user likes to target a single tag which is a
tuple-object he must give an additional iteration level (e.g. tag=(1,2) tags([(1,2)] must be given to target the
tag-family (1,2)).

Parameters
* tags (Iterable) — Iterable of family tags
* xtags_path — Additional family-tag iterables for deeper levels of teh iTree

* default (object) - This is a named parameter only! If default is given the default objet
will be returned in case of internal exceptions. If default is Exception an exception is raised

Return type list

Returns list of target items

itertree.iTree.get.by level_filter()

coded in helper-class:

36 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

itertree.itree_getitem._iTreeGetitem.by level_filter ()

Call via iTree().get.by_level_filters()
Get items by level-filters.
For in-depth operation additional parameters can be given each is a level-filter for the next level.

In case the build-in ifer-method is given (without parameters) all items in the level will be considered (no
filtering). The level filtering is always a hierarchical filtering.

Parameters

* filter method (Method) —filter_method analysis the itree-items and delivers True for
a match and False for no match (filtered out)

* xfilter method_path — Additional parameters for filter_methods for the deeper lev-
els of the iTree.

* default (object) - This is a named parameter only! If default is given the default objet
will be returned in case of internal exceptions. If default is Exception an exception is raised

Return type list

Returns list of filtered iTree-items found in the deepest targeted level

2.5.1 Target description

Beside the construction of the object the access to it’s items is the second core-functionality for a tree object.

In iTree this is one of the most complex functionalities available. The reason is the wide range of different possible
targets that are supported. It’s recommended that the user reads the following explanations and examples carefully to
understand the full range of functionalities available related to the access of children stored in i7ree.

But
like

even for less experienced users the easy access via itree[index] (list like counterpart) or itree[tag_idx_key] (dict-
counterpart) will work in most cases.

Lets build a small example i7ree-object and let’s see with which target definitions we can access the children in this
object:

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
iTr
>

root = iTree('root'")
root += iTree('child', wvalue=0)
root += iTree('child', wvalue=1)
root += iTree('child', value=2)
root += iTree('child', wvalue=3)
root += iTree('child', wvalue=4)
root += iTree (1, value=5)
root += iTree(('child', 1), wvalue='tag conflict")
any hashable object can be used as tag!
root += iTree((1, 2, 3), value=6) # any hashable object can be used as tag!
root .render ()
ee('root'")
iTree('child', value=0)

(
(
(
(
(
(

> iTree('child', wvalue=1)
> iTree ('child', value=2)
> iTree('child', value=3)
> iTree ('child', value=4)
> iTree (1, value=5)
> iTree(('child', 1), wvalue='tag conflict')
> iTree((1, 2, 3), value=6)
2.5. Item Access 37

itertree Documentation, Release 1.0.5

—_ —— — -~

T e e e e e R e

In the following examples have a special look on the result types delivered (single-targets -> iTree-child and multi-

Fig. 5: Figure showing the resulting iTree

targets -> [ist of matching children in iTree-order):

* Target via absolute index:

The absolute index is like the index in lists and targets the children counting from 0. And as in lists
negative values are supported too (count index from the last index down).

This operation is the fastest way to target a item in i7ree-objects.

This operation has highest priority in common access. It will “cover” the tag access to families
(based on integer-type tags).

The specific access method get.by_idx() is faster and can be used too.

This is a single/unique target therefore it delivers directly the targeted iTree-child-object.

>>> # Common index access:

>>> root [0] # absolute index access

iTree ('child', wvalue=0)

>>> root[-1] # absolute index access (negative values)

iTree((1, 2, 3), value=6)

>>> root[5] # This child is not targeted in the next step even that it's,
—tag==1!

iTree (1, value=5)

>>> root[l] # The absolute index access has higher priority than access,,
—via tags

iTree('child', value=1)

>>> # Specific index access:

>>> root.get.by_idx(0) # absolute index access

iTree('child', value=0)

>>> root.get.by_idx(-1) # absolute index access (negative values)

iTree ((1, 2, 3), value=6)

>>> root.get.by_idx(5) # This child is not targeted in the next step,
—even that it's tag==1!

iTree (1, value=5)

>>> root.get.by_idx(l) # The absolute index access has higher priority,,
—than access via tags

iTree('child', value=1)

Target via absolute index-slice:
As in lists the slicing of the absolute index is supported too.
But the result is no more unique, therefore the operation will return a list or blist.

The specific access method for this target is get.by_idx_slice() but the method parameter(s) must be
slice object(s).

>>> # Common index—-slice access:

>>> root[1:3]

blist ([iTree('child', value=1l), iTree('child', value=2)])
>>> # Specific index-slice access:

(continues on next page)

38

Chapter 2. Tutorial

s | [sy |H|¢-\;j-.|:l:l.l+ | mu:aj_[ﬂ'w.u.n | Mu;;.'j_ (1012310 [vates |

itertree Documentation, Release 1.0.5

(continued from previous page)

>>> root.get.by_idx_slice(slice (1, 3))
blist ([iTree('child', value=1l), iTree('child', wvalue=2)])

 Target via absolute index-list:

We can target multiple children by giving a list of indexes. The resulting list represents the order of
indexes the user gave.

Warning: Duplicated indexes will deliver duplicated items in the result. Especially in case of
in-depth access this should be avoided, because the results can be very confusing.

No unique result, a list will be returned.

The specific access method for this target is get.by_idx_list().

>>> # Common index-1ist access:

>>> root[[0, 2]]

[iTree('child', wvalue=0), iTree('child', wvalue=2)]

>>> # same as:

>>> [root[0],root[2]]

[iTree('child', wvalue=0), iTree('child', wvalue=2)]

>>> root[[2, 0, 2]] # The target-order is kept (even multiple same,,
—litems are kept)

[iTree('child', value=2), iTree('child', wvalue=0), iTree('child',
—value=2)]

>>> # Specific index-list access:

>>> root.get.by_idx_list ([0, 2])

[iTree('child', value=0), 1iTree('child', wvalue=2)]

* Target via tag-idx (key):

This tag-idx-key (family-tag, family-index) is unique for any child. The second item in the tuple is
the family-index. This gives the position of the child in the related tag-family-list (negative values
supported too -> count from the end). A tag-idx-key is internally identified via the given fuple of
length 2. (For downward compatibility the Tagldx-helper-object is still available and can be used for
this case too).

This operation has highest priority and covers tag access to families based on tuples and this opera-
tion is the second fastest way (after absolute index access) to target a object in iTrees.

The key is unique therefore the operation delivers a single iTree-object.

The specific access method for this target is get.by_tag_idx().

>>> # Common tag-idx-key access (given as tuple)

>>> # and how it must be used for targeting in other commands e.g._
— insert () or ‘move() :

>>> root[('child', 0)]

iTree('child', value=0)

>>> root['child', 0] # lazy way to give the tag-idx—-key

iTree ('child', wvalue=0)

>>> root[('child', -1)] # negative family-index, 1s supported too
iTree ('child', value=4)

>>> root[('child',1), 0] # This child is not targeted in the next step,
—even that it's tag==('child',1)!

iTree(('child', 1), value='tag conflict')

(continues on next page)

2.5. ltem Access 39

itertree Documentation, Release 1.0.5

(continued from previous page)

>>> root[('child', 1)] # The key access has higher priority than access,,
—via tags

iTree ('child', wvalue=1)

>>> # Specific tag-idx access (must be given as tuple)

>>> root.get.by_tag_idx(('child"', 0)) # Give the tuple; multiple_,
—parameters would target in-depth!

iTree('child', value=0)

e Target via (family-tag, family-index-slice) - pair:

Slice operations on family_index is supported but the slice object must be given explicit
slice(start,end,step).

Note: In this case we cannot use the slice definition via double dots like [0:3:2] . We must define
a slice()-object.

Result is not unique a item therefore a /ist or blist with the selected items will be returned.

The specific access method for this target is get.by_tag_idx_slice().

>>> # Common tag-idx-slice access (given as tuple)

>>> root[('child',slice(0,3,2))]

blist ([iTree('child', value=0), iTree('child', wvalue=2)])
>>> root['child',slice(0,3,2)] # lazy input supported

blist ([iTree('child', value=0), iTree('child', wvalue=2)])
>>> # Specific tag-idx-slice access (must be given as tuple)
>>> root.get.by_tag_idx_slice(('child',slice(0,3,2)))

blist ([iTree('child', value=0), iTree('child', wvalue=2)])

 Target via (family-tag, family-index-list) - pair:
Giving a index list of family indexes to target the children is supported.
The order of the delivered items is the order of indexes given and duplicates are kept too.
Result is a list of matching children.

The specific access method for this target is get.by_tag_idx_list().

>>> # Common tag-idx-1list access (given as tuple)

>>> root[('child', [0,2])]
[iTree('child', value=0), iTree('child', wvalue=2)]
>>> root[('child', [0,2])] # lazy input supported

[iTree('child', wvalue=0), iTree('child', wvalue=2)]

>>> # Specific tag-idx-1list access (must be given as tuple)
>>> root.get.by_tag_idx_list(('child', [0,21))
[iTree('child', value=0), iTree('child', value=2)]

e Target a whole tag-family:
Here we target all items that have the same tag (same family).

As already shown this object has lower priority, in case of conflicts (with idx or tag_idx) the user
should use the specific access method or he puts the tag as a single value in a set itreef{tag}] but the
access is much slower as the specific one.

Result is a list with all children having the target tag (whole tag-family).

The specific access method for this target is get.by_tag().

40 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

>>> root['child'] # In case of no conflicts a given family tag delivers,_
—the family directly

blist ([iTree('child', value=0), iTree('child', value=1l), iTree('child',
—value=2), iTree('child', value=3), iTree('child', value=4)])

>>> # specific tag-family access

>>> root.get.by_tag('child")

blist([iTree('child', value=0), iTree('child', wvalue=1l), iTree('child',
—value=2), iTree('child', value=3), iTree('child', wvalue=4)])

>>> root.get.by_tag(('child',1)) # target ('child',1) tag-family with_
—root[('child',1)] the tag-idx is targeted!

[iTree(('child', 1), value='tag conflict')]

>>> # The tag=('child',1) is a family tag not a tag-idx-key!

>>> root.get.by_tag(l) # target again an item which cannot be reached_
—via root[1]

[iTree (1, value=5)]

>>> root[{1l}] # In case of conflicts the user can use a tag-set with one_
—item too (slower as specific access)

[iTree (1, value=5)]

>>> # The tag=1 is a family tag not an absolute index!

* Target multiple tag-families tag-families-set:
If a set of multiple tags is given the children of the different families are combined in the output list.

Result is a list with all children having the target tag that were targeted. The order of the items is the
order of the families in the set.

The specific access method for this target is get.by_tags(). Different to the common access we can
give here also lists or tuples as parameter(s) the order will be kept but duplicates will be delivered as
given too.

>>> root[{(1,2,3),1, ('child',1)}] # order of tags in the set is kept in,,
—~the result

[iTree (1, value=5), iTree((1, 2, 3), value=6), iTree(('child', 1), value=
—'tag conflict')]

>>> root[{1l, ('child', 1), (1,2,3),}]

[iTree (1, value=5), iTree((1, 2, 3), value=6), iTree(('child', 1), value=
—'tag conflict')]

>>> root.get.by_tags([l, ('child',1),(1,2,3),]1) # here the order of th_
—~tags in the list is kept; duplicates will be delivered too

[iTree(l, value=5), iTree(('child', 1), value='tag conflict'), iTree((1
—~2, 3), value=6)]

r

* Target children via a filter-method:

A filter-method is a function that analysis the children object related to the properties, attributes, etc.
and that generates at the end a True/False (match/ no match) return per item. By this the children
are filtered and only the matching ones will be integrated into the result.

We have multiple items in the result a [ist will be returned.

The specific access method for this target is get.by_level_filter()

>>> # The following EXCEPTION is expected:

>>> root[lambda i: i.value%2==0] # filters all children which contains,_,
—an even value, but we have an exception:

Traceback (most recent call last):

TypeError: lambda: raised an exception in filter-calculation, the 6.
ahild iTr /{'nlq 'r‘t

EE===aS

LAY 1o Aot 2] rr-G:h
RS eotimes on next-page)
—the calculation

2.5. ltem Access 41

itertree Documentation, Release 1.0.5

(continued from previous page)

>>> root[lambda i: type(i.value) is int and i.value%2==0] # ensure that_
—~the filter-calculation matches to any child!

[iTree('child', value=0), iTree('child', wvalue=2), iTree('child',
—value=4), iTree((1, 2, 3), value=6)]

>>> root|[(lambda i: i.value==2)] # This filter targets in our case one,
—value only

[iTree('child', value=2)]

>>> root.get.by_ level_filter (lambda i: type(i.value) is int and i.value
—%2==0) # ensure that the filter-calculation matches to any child!
[iTree('child', wvalue=0), iTree('child', wvalue=2), iTree('child',
—value=4), iTree((1, 2, 3), value=6)]

>>> root.get.by_level filter(lambda i: i.value==2) # This filter targets,
—1in our case one value only

[iTree('child', value=2)]

e Target all children via a build-in iter or ... (Ellipsis):

The user can target all children of the iTree-object if he gives the iter or ... build-in function as a
target.

This function may make no sense from the first view because it’s equivalent to the main children
iterator __iter__(). But we will see that the option is very helpful in target_paths.

This results in multiple items and a list is returned.

>>> root[iter] # give build in iter to target all children

blist ([iTree('child', value=0), iTree('child', wvalue=1l), iTree('child',
—value=2), 1iTree('child', wvalue=3), iTree('child', value=4), iTree(l,
—value=b), iTree(('child', 1), value='tag conflict'), iTree((1, 2, 3),.
—value=6)])

>>> list (root) # is the recommended equivalent function for this but_
—~here we need must create the list explicit from the iterator
[iTree('child', value=0), iTree('child', wvalue=1l), iTree('child',
—value=2), 1iTree('child', wvalue=3), iTree('child', value=4), iTree(l, .
—value=5), iTree(('child', 1), value='tag conflict'), iTree((1, 2, 3),.
—value=6)]

>>> root [(lambda i: True)] # Delivers also the same result but is much_
—slower

[iTree('child', wvalue=0), iTree('child', wvalue=1l), iTree('child', |,
—value=2), iTree('child', wvalue=3), iTree('child', value=4), iTree(l,
—value=5), iTree(('child', 1), value='tag conflict'), iTree((1, 2, 3),.
—value=6)]

» Use different targets to target children in the first level via a target-list:

In a target list (instead of a absolute index only list) the user can combine the different targets already
explained (cumulate the targets).

The result is a flatten list that combines all those targeted children. The order of the children is
defined by the order of given targets and duplicates will be kept!

Mixed target lists can only be used via common access methods.

>>> # Here we target absolute index, absolute index, tag-idx-key,family-—
—set,filter

>>> root[[0,1, ("child', 1),{1},lambda i: type(i.value) is int and 1i.
—value>4]] # in result the iTree children order is kept and duplicates,_
—are deleted

(continues on next page)

42 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

(continued from previous page)

[iTree('child', value=0), iTree('child', wvalue=1l), iTree('child',
—value=1), iTree(l, value=5), iTree(l, value=5), iTree((1, 2, 3)
—value=6)]

>>> root[[{1l}, ("child', 1),lambda i: type(i.value) is int and i.value>4,
—0,1]] # same targets in other order delivers same result

[iTree (1, value=5), iTree('child', wvalue=1l), 1iTree(l, value=5), 1iTree((1,
— 2, 3), value=6), iTree('child', wvalue=0), iTree('child', wvalue=1)]

s

* Finally KeyError, IndexError, ValueError or TypeError Exceptions will be raced in case we have no
match (output is shortened in these examples):

>>> root['child',slice(1l,1)] # slice delivers no match
blist ([])

>>> root[{'child2'}] # invalid tag

Traceback (most recent call last):

KeyError: 'child2'

>>> root[100] # Index access out of rangeroot['child',100] # family_,
—index out of range

Traceback (most recent call last):

IndexError: Given abs-idx in target 100 is out of range
>>> root[('child',100,1)] # Invalid family tag
Traceback (most recent call last):

ValueError: Given target ('child', 100, 1) is invalid

>>> root[lambda i: i.value>2] # invalid calculation for child with_,
—value 'tag conflict'

Traceback (most recent call last):

TypeError: lambda: raised an exception in filter-calculation, the 6.
—child iTree(('child', 1), value='tag conflict') is incompatible
—with the calculation

2.5.2 In-depth Item Access

In general all get methods can be used for in-depth access too (The only exception is the __getitem__()-method that
targets first level only).

In the get-methods the levels are addressed by multiple parameters:

get(target_levell, target_level?2, ... target_leveln).

To check the in-depth access we append our example with an item in level2 of the tree:

>>> root[0].append (iTree ('sub_child',value=0)) # prepare one level deeper item
iTree ('sub_child', value=0)

For sure the deeper levels can be accessed via multiple __getitem__() too. But in case of multiple matches the results
can be very confusing.

Imagine in the first level you target a tag-family with multiple items the second index targets in this case the items in
the delivered levell list only and does not dive in the tree as the user might expect:

2.5. ltem Access 43

itertree Documentation, Release 1.0.5

=1 .. ' T

nuuou+I:=:

Fig. 6: Figure shows the tree with additional level in first item

>>> root[0] [0] # access nested (deeper) items

iTree ('sub_child', value=0)

>>> root['child'][0] # If the result of first operation is not a single item this_,
—~will deliver the first item in the result-1list

iTree ('child', value=0, subtree=[iTree('sub_child', value=0)])

>>> # See that the result is in the first and not in the second level of the iTree!!

To avoid such failures it’s recommended to use the more advanced in-depth get-methods. E.g: usage of get():

>>> root.get (0,0)

iTree ('sub_child', value=0)

>>> root.get (0, ('"sub_child',0)) # access nested (deeper) items via target-path-1ist_,
— (mixed target types)

iTree ('sub_child', value=0)

>>> target_path=[0,0]

>>> root.get (xtarget_path) # targets deep

iTree ('sub_child', value=0)

>>> root.get (x[0,0]) # targets deep —-> single item arguments given will deliver_
—single item only

iTree ('sub_child', value=0)

>>> # be CAREFUL because:

>>> root.get (x[0,0]) # gives empty list because target single item has no subtree_
— (type cast to 1ist)

iTree ('sub_child', value=0)

>>> root.get (target_path) #target first level only (absolute index-1list given)

[iTree('child', value=0, subtree=[iTree('sub_child', value=0)]), iTree('child',
—value=0, subtree=[iTree('sub_child', wvalue=0)])]

>>> root.get ([0,0]) #target first level only (absolute index-list given)
[iTree('child', value=0, subtree=[iTree('sub_child', value=0)]), iTree('child',

—value=0, subtree=[iTree('sub_child', wvalue=0)])]

The functionality of ge#() is to handle multiple results in higher levels and combine them in an internal iterator. The
result is at the end a flattended list that considers all findings in the final target level from all branches that were
matching.

In case one level only is given the method behaves like __getitem__() except that in case of issues a default might be
returned (if defined as named parameter).

The method get.single() enforces the delivery of unique items. The user can be sure that just a single item will be
delivered. In case of multi-target parameters given the method analysis the result and shrink a list with a unique
element to the element itself. If the list contains more items this is handled as no match and a ValueError will be raised
(or default value will be delivered if defined).

The method get.iter() delivers always an iterator over the items targeted. In case of unique findings it delivers a list
[unique_item] that is iterable and can be easy identified by a type check.

For the in-depth get-methods a level filter functionality is available. The user can define level filters by giving filtering
methods for the different levels (see level-filtering).

44 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

>>> root.get (lambda i: i.value==0,lambda i: i.value==0) # level filtering
[iTree('sub_child', wvalue=0)]

2.6 Comparing iTrees

In case iTree-items should be compared the difference in between the == operator and the is keyword should be
understood. An iTree object is equal (==) if the following statement delivers True :

>>> itree.tag and itree.data and all (sub_i==sub_o for sub_i,sub_o in zip(itree,other))
True

To check if the item is really the same (instance) the user must use is.

itertree.iTree.__eq ()
compares if the tag, value and children content of another item matches with this item

Note: If you like to check if it is really the same object you should use “is” instead of "==" operator

Parameters other — other iTree
Returns boolean match result (True match/False no match)

itertree.iTree.equal ()
compares if the data content of another item matches with this item

Parameters
* other - other iTree
* check_coupled - check the couple object too? (Default False)
* check_flags — check the flags of the objects? (Default False)
Returns boolean match result (True match/False no match)

itertree.iTree.__hash__ ()
The hash operation is available

Returns integer hash

The explicit equal() method allows the check of additional properties (e.g. flags or the itree.coupled_object), which
are not considered in the normal __eqg__ () method.

The difference inbetween == and is is also important in case of the in operation where the operation == is used. Same
for the index() and deep.index() method. The index() function behaves here like in lists and the start parameter can be
used to target multiple searches.

To get the index of a specific item it is recommended just to use the iTree property itree.idx or itree.idx_path which
delivers the absolute index/index-path of the specific item directly.

property iTree.idx
Index of this object in the iTree (related to the absolute order)

Method is very important for internal functionalities

2.6. Comparing iTrees 45

itertree Documentation, Release 1.0.5

Note: In general the item index is cached but in case of deleted items or reorder operations the cache might be
outdated. In this case the index update based on a search might take longer.

Return type Union[int, None]
Returns unsigned integer representing the index (related to absolute order of iTree)

property iTree.idx_path
delivers a list of absolute indexes from the root to this item

For items with no parent (root_item) an empty tuple will be delivered

Note: We deliver here a tuple because it might be helpful if the object is hashable (usage as a dict key)

Return type tuple

Returns tuple of index integers (here we do not deliver an iterator!)

Methods checking if a item is a child of the iTree-object:

itertree.iTree._ contains__ ()
Checks if an “iTree” object is part of the “iTree” for comparison == -> "__eq__ ()" is used. For finding a specific
object use “is_parent()” or ‘is_in()" instead.

In case no “iTree” object is given the function uses "__getitem__~ to check if matching item(s) exists.

Note: There is no coresponding in-depth function available the user can easy search via: >>> # Let itree be the
iTree object the target should be searched in >>> any(tag == i.tag for i in itree.deep) >>> any(searchkey == i[0][-
1] for i in itree.deep.tag_idx_paths()) >>> s=len(index_list) >>> any(len(i[0])>s and index_list == i[0][(-s+1):]
for i in itree.deep.idx_paths())

Parameters target —iTree object searched for or a target used by ~__getitem__()” method

Returns
* True - matching child is found

* False - no matching item found

itertree.iTree.deep.__contains__ ()
coded in helper-class:

itertree.itree_indepth._iTreelIndepthTree._ contains__ ()
Call via x in iTree().deep

Checks if given “iTree” is child or sub-child of the “iTree” (inside). For comparison == -> "__eq__()” is used.
For finding the exact object instance use “is_in()” instead.

Parameters item (iTree)—iTree object to be searched for
Return type bool
Returns

* True - matching child is found

46 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

* False - no matching item found

itertree.iTree.is_in{()
Checks if the given object is child of the iTree. Different to ~
(specific) object (is) and not based on "__eq__()".

Parameters item - iTree object to be searched for

contains__()” we check here for the instance

Returns
* True - matching child is found
* False - no matching item found
itertree.iTree.deep.is_in()
coded in helper-class:

itertree.itree_indepth._iTreelIndepthTree.is_in()
Call via iTree().deep.is_in()

Checks if the given object is in thee iTree. Different to *__contains__()” we check here for the instance (specific)

object (is) and not based on “__eq__()".

Parameters item (iTree)—iTree object to be searched for
Return type bool
Returns

* True - matching child is found

* False - no matching item found

itertree.iTree.index ()
The index method allows to search for the absolute index of a matching item in the i7ree. The item must be a

iTree object and the index will deliver the first match. The comparison is made via == operator.

If item is not found a IndexError will be raised

Note: To get the index of a specific item instance the .idx- property should be used.

Parameters
* item (iTree)—iTree object to be searched for

* start (Union[iTree, target_path])—iTree item or start target_path where index
search should be started (start item is included in search)

* stop (Union[iTree, target_path]) — iTree item or stop target path where index
search should be stopped (stop item is not included in search)
;rtype: int :return: absolute index of the found item
itertree.iTree.deep.index ()
coded in helper-class:

itertree.itree_indepth._iTreeIndepthTree.index ()
Call via iTree().deep.index()

The index method allows to search for the index_path of a matching item in the i7ree. The item must be a iTree
object and the index will deliver the first match. The comparison is made via == operator.

2.6. Comparing iTrees a7

itertree Documentation, Release 1.0.5

Warning: If the user gives the start or stop argument not as an iTree-item but as a target_path he must give
a list (or iterable) for targeting each level in the tree! The arguments are interpreted as the arguments for
iTree.get().

This means if the user targets an element in first level by an absolute index he must give it as in-

dex(item,[index]) giving just the integer value will not work in this case!

If item is not found a IndexError will be raised

Note: To get the index of a specific item instance in his parent tree the .idx_path- property should be used.

Parameters
* item (iTree)—iTree object to be searched for

* start (Union[iTree, target_path])—iTree item or start target_path where index
search should be started (start item is included in search)

* stop (Union[iTree, target_path]) — iTree item or stop target_path where index
search should be stopped (stop item is not included in search)
;rtype: list :return: index_path of the found item

itertree.iTree.count ()
Counts how many equal (==) children are in the i7ree-object.

Parameters item (iTree)— The iTree-items will be compared with this item
Return type int
Returns Number of matching items found
itertree.iTree.deep.count ()
coded in helper-class:

itertree.itree_indepth._iTreeIndepthTree.count ()
Call via **iTree().deep.count()***

Counts (in-depth) how many equal (==) items are inside the i7Tree-object.
Parameters item (iTree)— The iTree-items will be compared with this item
Return type int
Returns Number of matching items found

itertree.iTree.is_tag_in()
Checks if a iTree contains the given family-tag (first-level only) :param tag: family tag :return: True/False

itertree.iTree.deep.is_tag _in ()
coded in helper-class:

itertree.itree_indepth._iTreeIndepthTree.is_tag_in()
Call via iTree().deep.is_tag_in()

Checks if a iTree contains the given family-tag (in_depth (all levels)) :param tag: family tag :return: True/False

iTree's can also be compared with each other the criteria here is the size *__len__() of the objects. Based on this
comparison operators < ; <= ; > ; >= are available. The methods exists in the level 1 children related variant (base-

class) or in in-depth variant (use deep-sub-class).

48 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

For length calculations the following methods exists:
itertree.iTree._ _len__ ()
itertree.iTree.deep.__len__ ()

coded in helper-class:

itertree.itree_indepth._iTreeIndepthTree._ len__ ()
Call via len(iTree().deep)

Delivers number of all items (in-depth) inside the iTree-object
Return type int
Returns number of children and sub-children in iTree-object

itertree.iTree.filtered len()
Calculates the number of filtered children.

Parameters filter method (Callable) — filter method that checks for matching items and
delivers Truel/False. The filter_method targets always the iTree-child-object and checks a char-
acteristic of this object for matches (see filter_method)

Return type int

Returns Number of matching items found
itertree.iTree.deep.filtered_len ()
coded in helper-class:

itertree.itree_indepth._iTreeIndepthTree.filtered len()
Call via **iTree().deep.filtered_len()**"

Calculates in-depth the number of filtered items.
Parameters

e filter method(Union[Callable, None])-filter method that checks for matching
items and delivers True/False. The filter_method targets always the iTree-child-object and
checks a characteristic of this object for matches (see filter_method)

* hierarchical (bool) -

— True - hierarchical filtering if a parent does not match to the filter the children are
taken out too, and they are not considered

— False - non-hierarchical filtering (all items are checked against the filter and consid-
ered in the result)

Return type int

Returns Number of matching items found

2.6. Comparing iTrees 49

itertree Documentation, Release 1.0.5

2.7 iTree properties

As we will see later on some properties of the i7ree object can be modified by the related methods.
The iTree object contains the following general properties:

property iTree.root
property delivers the root-item of the tree

In case the item has no parent it will deliver itself
Return type iTree
Returns iTree root item

property iTree.is_root
Is this item a root-item (has no parent)?

Return type bool
Returns

* True - is root

e False - is not root

property iTree.parent
Property delivers current items parent-object.

Return type Union[i7ree, None]
Returns iTree parent-object or None (in case no parent exists)

property iTree.pre_item
Delivers the pre-item (predecessor) of this object in the parent-tree. If self is first item or there is no parent None
will be delivered.

Return type Union[i7ree,None]
Returns iTree predecessor or None (no match)

property iTree.post_item
Delivers the post-item (successor) of this object in the parent-tree. If self is first item or there is no parent None
will be delivered.

Return type Union[i7ree,None]
Returns iTree successor or None (no match)

property iTree.level
Delivers the distance (number of levels) to the root-item of the tree. Or in other words how deep in tree the item
is positioned. In case item has no parent (is a root-item) this method will deliver 0.

Return type int
Returns integer - number of levels (outer direction)

property iTree.max_depth
Relative from this item the method measures the maximum depth of the tree and delivers the maximum number
of levels that are found in this object.

If the user wants to now the maximum depth of the whole tree ensure that the property of the root-item is read.
The user might use my_tree.root.max_depth to ensure this.

Return type int

50 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

Returns integer maximal number of levels that exists in the tree (inner direction)

property iTree.is_tree_read only
Is the tree protection flag set? In this case the tree structure cannot be changed

This property targets the tree structure not the value!
Return type bool
Returns
* False - subtree can be changed (writeable)
* True - subtree is protected (read-only)

property iTree.is_value_read only
Is iTree value read_only? Is the value protection flag iTFLAG.READ_ONLY_VALUE is set?

Return type bool
Returns True - read-only protection of value active False - value is writeable

property iTree.is_linked
In contrast to iTreeLinked class this is False

Return type bool
Returns True/False

property iTree.is_link_ root
property that marks the iTree item as an item that contains a link

Returns
e True - is a link root item
¢ False is no iTree link item

property iTree.is_link cover
If the item is local and covers a linked item the property is True

Return type bool
Returns True/False

property iTree.is_placeholder
Property shows that item is a placeholder class

Normally there should be no placeholder class in the iTree but in case a loaded link does no more contain the
expected items it might happen that such a class artifact is still in the tree. In placeholders the value contains the
family index in the linked class.

Return type bool
Returns True/False
Item identification properties:

property iTree.idx
Index of this object in the iTree (related to the absolute order)

Method is very important for internal functionalities

Note: In general the item index is cached but in case of deleted items or reorder operations the cache might be
outdated. In this case the index update based on a search might take longer.

2.7. iTree properties 51

itertree Documentation, Release 1.0.5

Return type Union[int, None]
Returns unsigned integer representing the index (related to absolute order of iTree)

property iTree.tag_idx
The tag_idx is a unique identification of the item. It is represented by a tuple containing the family-tag and the
family related index of the item.

If the item is not part of a parent-tree (root-item) in this case the result will be None.
Return type Union[tuple, None]
Returns tuple (family-tag, family-index) or None (if item has no parent)

property iTree.idx_path
delivers a list of absolute indexes from the root to this item

For items with no parent (root_item) an empty tuple will be delivered

Note: We deliver here a tuple because it might be helpful if the object is hashable (usage as a dict key)

Return type tuple
Returns tuple of index integers (here we do not deliver an iterator!)

property iTree.tag_idx_path
The path is a tuple of tag_idx tuples from root to this item. Each tag_idx is a tuple containing the pair family-tag
and family-index.

For items with no parent (rooot_item) an empty tuple will be delivered

Note: We deliver here a tuple because it might be helpful if the object is hashable (usage as a dict key)

Return type tuple

Returns tuple of key tuples containing family-tag and family-index

The following examples shows how some of the iTree-properties are read out.

>>> root = iTree('root', subtree=[iTree('child', 0), iTree((l, 2), 'tuple_child0'),
—~iTree('child', 1), iTree('child', 2),iTree((1, 2), 'tuple_childl'")])
>>> root[0] += iTree('subchild")
>>> root.render ()
iTree ('root')

> iTree('child', wvalue=0)

> iTree ('subchild'")
iTree((1, 2), value='tuple_child0")
iTree ('child', wvalue=1)
iTree ('child', value=2)

> iTree((1, 2), value='tuple_childl")
>>> root[0][0].root

iTree('root', subtree=[iTree('child', value=0, subtree=[iTree('subchild"')]), ...
—~iTree((1, 2), value='tuple_childl"')])
>>> root[0][0].1dx

0
>>> root[0][0].tag_1idx

('"subchild', 0)

vV V. V -

(continues on next page)

52 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

(continued from previous page)

>>> root [0] [0].idx_path

(0, 0)

>>> root[0][0] .tag_idx_path
(('"child', 0), ('subchild', 0))
>>> root[1l].value
tuple_child0

>>> root[l].tag_idx

(1, 2), 0)

>>> root[—-1].value
tuple_childl

>>> root[-1].tag_idx

(1, 2y, 1)

>>> len(root) # level 1 only

5

>>> len(root.deep) # all in-depth items
6

>>> root2=root.copy ()

>>> root2[-1].append(iTree ('subitem')) # we append one item in depth
iTree ('subitem')

>>> root2>root # level 1 only size-compare

False

>>> root2.deep>root.deep # all items size—-compare

True

— il e T ———
— -

({'r:h'ild'.[i] \'ﬂl.ll.-ﬂj GEL!}.W vﬂu:-'mple_uhildﬂ') (E'ﬁil:l’.l] vnlur-l::l ({'uhild.',zj '|-'I|H..—1J ({{I,z}.l} ulur'mplr_ﬂildl‘j

[ubehald’,)

Fig. 7: Figure showing iTree used in example

As shown in the last example hashable objects can be used as tags for the itertree items to be stored in the i7Tree
object. Even for those kind of tag objects it is possible to store multiple items with the same tag. In the example the
enumeration inside the tag family can be seen in the index enumeration (tag_idx).

Beside those structural properties the i7ree objects contains a property that can be used to “link” the iTree -object to
another Python object.

property iTree.coupled object
The iTree-object can be coupled with another Python-object. The pointer to the object is stored and can be
reached via this property. (E.g. this can be helpful when connecting the i7ree with a visual item (hypertree-list
item) in a GUI)

Returns pointer to coupled-object or None if no object is stored

itertree.iTree.set_coupled_object ()
Couple another Python-object with this iTree-object.

Compared with the value the coupled-object is not tracked by any internal functions. We do not consider it in
any relation (e.g. __contains__() and do not dump it in files, etc. Even in linked items the coupled-object is not
protected. And in copies it is ignored and not taken over.

2.7. iTree properties 53

itertree Documentation, Release 1.0.5

Note: E.g. The coupled-object might be an object in a GUI that is related to this item.

Parameters coupled_object — object pointer to the object that should be coupled with this
iTree item

Different than the data the coupled_obj the idea is here to have just a pointer to another Python object. The only
operations considering those objects is in the link root were during reload or if a linked item is converted in a local
item the couple object will be taken over. The equal() compare function can also target the coupled-object.

Note: Behind this objects is the following idea: E.g. The user might couple the iTree to a graphical user interface
object. Connect it with an item in a hypertree-list. Or it can be used to couple the iTree object to an item in a mapping
dictionary. The property coupled-object is not actively managed by the iTree object it’s just a place to store a pointer.
E.g. If iTree is stored in a file or standard compares this information will not be considered.

There can be cases where it is helpful to use this additional possibility to store information in the iTree too. E.g. in the
attached calendar.example.py we use the coupled-object to store the day-name.

2.8 iTree value related methods

Compared with the previous versions (0.8.0) the handling of the data/value property is simplified a lot.

First we renamed the data-property to value-property to be compatible with the naming of items in dicts. Second we
came to the conclusion that the management of the value content is not the core function of i7ree and so we made it
more independent as it was in the previous versions.

Now it is in the hand of the user if he stores a more complex object or e.g. just a simple integer value in the iTree-object.

The old iData’class is still available for downward compatibility. But the object is no more placed automatically in
the value of a iTree item. To utilize it the user must put the object manually in. As explained we do not expect anymore
that the object stored in value is a dictionary like object (iData). We uncoupled here the functionalities.

If required we can recommend one of the data-models available in the itertree package. They can be used to store
specific types of data (including checks). Other data models might be used too but the user must ensure that the
external data models are serialized correctly if he wants to store the iTree and his data in files.

In case a iTree object is created without a value parameter the default value object will be the NoValue class.
These are the value related methods available in i7ree.

property iTree.value
Delivers the full value object stored in the i7ree-object

Return type object
Returns value-object of the item

itertree.iTree.get_value ()
Delivers the value-object of the item or a sub-value in case key_index parameter is used and a matching object
is stored in the iTree .

Note: If iTValueModel is stored in iTree the method will not target the model it will target the value inside. If
the model itself is required the value-property of iTree must be used.

54 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

Except In case a key_index is given but the object is not a dict or a list like object an AttributeError
will be raised (__getitem__() required). If no matching item is found an “IndexError or KeyError
will be raised.

Return type object
Returns value object the iTree or iTValueModel (in case a model is stored in the iTree)

itertree.iTree.set_value ()
Set/replace the value content of the iTree-object.

The method returns the previous stored value object that was replaced by the operation.

Note: If an iTValueModel is stored as value in the iTree by default the set_value() method will target the value
which is stored inside the model. If the model itself should be exchanged the user must give the new model as
value parameter of this method. To replace the model with another Python object the user must first delete the
model via del_value() command and afterwards set the new value.

Parameters value (object) — data-object that should be placed as value or in case we have a
iTValueModel already as value it is placed inside the model.

Return type object
Returns old value object that was stored in iTree before

itertree.iTree.del_value ()
Deletes the full value-object stored in “iTree” ('NoValue” is stored in iTree).

This method will always delete the whole object stored in iTree even iTValueModel-objects are deleted. To
delete the value content of a model mytree.value.clear() or ‘set_value(NoValue)’ might be used.

Returns deleted value

>>> my_tree = iTree('root')

>>> my_tree.set_value (1)

<class 'itertree.itree_helpers.NoValue'>
>>> repr (my_tree.get_value())

1

>>> my_tree.set_value(Data.iTInt8Model()) # store a model limiting the matching,,
—values

1

>>> my_tree.set_value(l) # store the value in the model

<class 'itertree.itree_helpers.NoValue'>

>>> repr (my_tree.value) # delivers the whole object stored in value
1iTInt8Model (1)

>>> repr (my_tree.get_value()) # again we take the value out of the model
1

>>> my_tree.set_value (1024) # value out of the valid range

Traceback (most recent call last):

ValueError: Given value does not match to given filter_method (out of range)
>>> repr (my_tree.del_value()) # delete the model

iTInt8Model (1)

>>> my_tree.value

<class 'itertree.itree_helpers.NoValue'>

In case a iTValueModel based object is stored in the iTree value the methods “get_value() and set_value() will not
target the model itself. Furthermore the value inside the models will be read or exchanged. If the model itself should
be exchanged set_value() can be used too the method will automatically identify that the new value is a model and the

2.8. iTree value related methods 55

itertree Documentation, Release 1.0.5

old model will be replaced by the new one. Beside this the del_value() targets always the value object and replaces
it with NoValue. Even a model will be deleted in this case. To delete the value in the model the user must use

get_value(NoValue) or my_tree.value.clear().
In addition to the normal get and set we have the key related methods for value access:

itertree.iTree.get_key value ()

Delivers the value-object of the item or a sub-value in case key_index parameter is used and a matching object

is stored in the iTree .

In case the stored value is a dict-like object the key will be used as the key of the dict. In case the stored value

is a list-like object the keyx will be used as the index of the list.

In case the target value is a iTValueModel the value inside will be targeted and not the model itself.

Note: If iTValueModel is stored in iTree the method will not target the model it will target the value inside. If

the model itself is required the value-property of iTree must be used.

Except In case a key_index is given but the object is not a dict or list like object an AttributeError
will be raised (__getitem__()-method required). If no matching item is found an IndexError or
KeyError will be raised.

Parameters key (Optional [Hashable, int])— Optional key or index parameter
Return type object
Returns value object the iTree or iTValueModel (in case a model is stored in the iTree)

itertree.iTree.set_key value()
Depending on the already stored object this operation is a sub-replacement of a part only.

The method returns the previous stored value object that was replaced by the operation.

The user can influence the behavior by giving the key parameter. And it depends on the already stored value
object (e.g. a list or dict). Only the value of the related item will be replaced or in case the item did not exist

yet the might object will be extended by the given value (dict only).
Depending on given key parameter and the already stored object we have the following possible behaviours:
* dict stored in value -> store the value in the dict with the key given in key_index

* dict stored in value and matching item-value is a i7ValueModel -> replace value inside the model

* list stored in value -> key_index must be an index and replace the related item in the list with the value

given

* list stored in value and matching (index) item-value is a iTValueModel -> replace value inside the model

* key == INF and list stored in value -> append given value in the list

Note: If an iTValueModel is stored as value in the iTree by default the mytree.set_value()-method will target the
value which is stored inside the model. If the model itself should be exchanged the user must give a new model
as value parameter of this method. To replace the model with another Python object the user must first delete
the model via del mytree.value[key] command and afterwards set the new value or he sets the value directly via

mytree.value[key]==new_value .

Parameters

56 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

* key (Optional [Hashable, int]) — key or index of the value object (depends on the
object already stored in iTree). if key==INF the value will be appended in case a list-like
object is already stored in the i7Tree-object.

* value (object,) — value object that should be placed as value or in case a key is given
the sub-value in the iTree or in case we have a iTValueModel is used inside the model.

Return type object

Returns old value object that was stored in iTree before
In general these methods behave like the normal counter part (model objects are handled the same way). The only
difference is that these methods targeting sub_values in dict or list like objects (using __getitem__()). For dict’s key is
used like a key and for “list key is used as an integer index. If the key does not exists in a dict like object the key-value

pair will be added. For “list an append via INT=float(‘int’) as index is possible too. By default for /ist like objects no
matching indexes will raise an IndexError exception.

2.9 iTree iterations

As the name itertree suggests we have a lot of possibilities to iterate over the items in the tree-structure. In the class
the we use generators (yield-statement) to create the output for the iterations.

Note: The class doesn’t contain a __next__()-method. This means if the given iteration methods are used (generators
inside) the user must cast those generators for functions targeting the __next__() via the build-in iter()-statement. But
most often this is not required because by most functionalities the supported __ifer__() method is targeted.

In iTree we have iteration-generators which are more related to list-like functionalities and other which are targeting
more in the direction of the dict-like iterators.

Most iteration-generators are available in diffrent level behavior:
1. The children only variant iterating only over the items in level 1 of the tree-structure
2. In the in-depth variant which iterates as a flatten iterator over all the nested children.
First we show the list like standard iterator which delivers the children in the main/absolute order of the i7Tree-object.
itertree.iTree._ _iter_ ()
The more dict-like iteration-methods targeting the children (level 1) are:

itertree.iTree.keys ()
Iterates over all children and deliver the children tag-idx tuple (family-tag,family_index)

Note: This is a dict like iterator that delivers the unique keys for all children.

Parameters filter method (Union[Callable, None])—filter method that checks the item
and delivers True/False. The filter_method targets always the iTree-child-object and checks a
characteristic of this object for matches

If None is given filtering is inactive.
Return type Iterator

Returns iterator over the tag-idx of the children

2.9. iTree iterations 57

itertree Documentation, Release 1.0.5

itertree.iTree.values ()
Iterates over all children and deliver the children values

Parameters filter method (Union/[Callable, None]) — filter method that checks for
matching items and delivers True/False. The filter_method targets always the iTree-child-object
and checks a characteristic of this object for matches (see filter_method)

If None is given filtering is inactive.
Return type Iterator
Returns iterator over the values stored in the children

itertree.iTree.items ()
Iterates over all children and deliver the children item-tuples (key,item) or (key,value). As key we use the unique
tag-idx: (tag-family,family-index).

The function is comparable with dicts items() function.
Parameters

* filter method(Union[Callable, None])—filter method that checks for matching
items and delivers True/False. The filter_method targets always the iTree-child-object and
checks a characteristic of this object for matches (see filter_method)

If None is given filtering is inactive.
* values_only (bool)—
— False (default) - in the key,value tuple the iterator put the iTree object as value in
— True - in the key,value tuple the iterator put “only” the value object of the iTree-object in
Return type Generator
Returns iterator over the target keys and item value of the children

To make the delivered generator-content visible we use the list()-cast in the following examples:

>>> # create a small nested iTree:

>>> root = iTree('root', subtree=[iTree('one', 1, subtree=[iTree('subone', 1.1),
—~i1Tree ('subtwo', 1.2)1), iTree('two', 2), iTree('three', 3)1)

>>> list (root) # ___iter_ ()

[iTree('one', value=1l, subtree=[iTree ('subone', value=1.1l), iTree('subtwo', wvalue=1l.
—~2)1), iTree('two', value=2), iTree('three', value=3)]

>>> list (root)
[iTree('one', value=1l, subtree=[iTree('subone', value=1.1l), iTree('subtwo', wvalue=1l.

—~2)1), iTree('two', value=2), iTree('three', value=3)]
>>> list (root.values())
[11 2/ 3}

>>> list (root.tag_idxs())
Traceback (most recent call last):

AttributeError: 'iTree' object has no attribute 'tag_idxs'

>>> list (root.items ())

[(('one', 0), iTree('one', value=1l, subtree=[iTree ('subone', value=1.1l), iTree('subtwo
—"', value=1.2)1)), (('two', 0), iTree('two', value=2)), (('three', 0), iTree('three',
— value=3))]

>>> list (root.items (values_only=True))

[(('one', 0), 1), (('two', 0), 2), (('three', 0), 3)]

We have some special iteration-methods related to the item access based on the groups created by tag-families. The
delivered items are ordered by the first item (or the last - if parameter is set) in the family and the iteration runs over

58 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

all items of the first familly then all items of the next and so on.

itertree.iTree.tags ()
iters over all family-tags in level 1 (children). The order is based on first or last item in the family.

Parameters order_ last (bool)—
* False (default) - The tag-order is based on the order of the first items in the family
* True - The tag-order is based on the order of the last items in the family

Return type Iterator

Returns tag iterator

itertree.iTree.iter_families ()
This is a special iterator that iterates over the families in iTree. It delivers per family the tag and a list of the
containing items. The order is defined by the absolute index of the first item in each family

Method will be reached via iTree. Families.iter()
Parameters

e filter method(Union[Callable, None])—filter method that checks for matching
items and delivers True/False. The filter_method targets always the iTree-child-object and
checks a characteristic of this object for matches (see filter_method)

If filter_method is None no filtering is performed

Note: An internal filtering is available because this may change the order of the delivered
items. An external filter with same method might deliver a different result!

* order_last (bool)—
— False (default) - The tag-order is based on the order of the first items in the family
— True - The tag-order is based on the order of the last items in the family
Return type Generator
Returns iterator over all families delivers tuples of (family-tag, family-item-list)

itertree.iTree.iter_family items()
This is a special iterator that iterates over the families in iTree. It iters over the items of each family the ordered

by the first or the last items of the families.
Parameters order_last (bool)-—
* False (default) - The tag-order is based on the order of the first items in the family
* True - The tag-order is based on the order of the last items in the family
Return type Generator

Returns iterator over all families delivers tuples of (family-tag, family-item-list)

Note: The family structure inside iTree cannot be made available directly because this would give the user the
possibility of corrupting manipulations. But the user can use those family related iteration functions if he wants to
create a representation of the family structure.

Most in-depth iteration-methods have additional parameters:

* filter_method filter parameter which allows the hierarchical-filtering inside the iteration loops.

2.9. iTree iterations 59

itertree Documentation, Release 1.0.5

* up_to_low allows to select the direction of the iteration top->down or bottom-> up (default: up_to_low=True).
All the in-depth iteration-methods are reached via the helper class iTree.deep:
itertree.iTree.deep.__iter_ ()
coded in helper-class:

itertree.itree_indepth._iTreelIndepthTree.__iter_ ()
Call via: iter(iTree().deep)

In-depth generator (iterator) which iterates over all nested items of i7Tree top -> down direction
Return type Generator
Returns iterator over all iTree -items
itertree.iTree.deep.iter ()
coded in helper-class:

itertree.itree_indepth._iTreeIndepthTree.iter ()
Call via iTree().deep.iter()

In-depth iterator that iterates over all items in the nested iTree-structure. The iterator flattens the nested structure.

Via the parameters the user can achieve hierarchical filtering of items. He can change the iteration order up->
down or down->up.

If no parameter is given iter() behaves like the build in __iter__() method of the object.

Note: The given iteration order must not be seen like the build-in ‘reversed()’ function which changes the
iteration direction in general! Furthermore, it means we iterate:

e up_to_low==True: parent-> child-> sub-child-> sub-sub-child-> ...
or we start from the most-inner nested item:
e up_to_low==False: item, parent, parent-parent, ..., -> root

But we always start in the right order we have in iTree first the root or in second case first most-inner nested
item coming from the root.

Parameters

* filter _method(Union[Callable, None])-filter method that checks for matching
items and delivers True/False. The filter_method targets always the iTree-child-object and
checks a characteristic of this object.

If None is given no filtering will be performed.
* up_to_low (bool)—
— True (default) - we iterate in-depth from up to the lower inner structure of the iTree-object
— False - we iterate in-depth from lower to upper structure of the i7Tree-object
Return type Generator

Returns iterator over all nested iTree -items

As explained we can iter in two directions up-> low (default) or low->up (set parameter up_to_low=False):

60 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

>>> root = 1Tree('root')
>>> for i in range(2):
item=root.append(iTree ('%1'%i, 1i))
for ii in range(2):
subitem = item.append (iTree('%$i_%i' % (i,1i), ix10+ii))
for iii in range(2):
subitem.append (iTree ('$i_%i_%i' & (i, ii,iii), 1 % 100 + 1iix10+iidi))
>>> [1 for i1 in root.deep.iter (up_to_low=True)] [0:5] # show just a part
[iTree('0', value=0, subtree=[iTree('0_0', value=0, subtree=[iTree('0_0_0', wvalue=0),
—iTree('0_0_1"', value=1l)]), iTree('0_1', value=1l, subtree=[iTree('0_1_0', value=10),
—~1Tree('0_1_1"', wvalue=11)])1), 1iTree('0_0"', wvalue=0, subtree=[iTree('0_0_0",_
—value=0), iTree('0_0_1', wvalue=1l)]), iTree('0_0_0', value=0), iTree('0_0_1"',
—value=1), iTree('0_1', value=1l, subtree=[iTree('0_1_0', value=10), iTree('0_1_1"',
—value=11)1)1]
>>> [1 for i in root.deep.iter (up_to_low=False)] [0:5] # show just a part
[iTree('0_0_0', value=0), iTree('0_0_1', value=l), iTree('0_0', value=0,
—subtree=[1iTree('0_0_0"', wvalue=0), iTree('0_0_1', value=1l)]), iTree('0_1_0",_
—value=10), iTree('0_1_1', value=11)]

x

Fig. 8: Figure schema for up->down (default) iteration

ordering

Fig. 9: Figure schema for down->up iteration

Additional we have the in-depth iteration-methods:
itertree.iTree.deep.idx paths ()
coded in helper-class:

itertree.itree_indepth._iTreeIndepthTree.idx paths ()
Call via iTree().deep.idx_paths()

In-depth generator (iterator) which iterates over all nested items of the iTree-object in top -> down direction.
The iterator delivers per item the pair (relative idx_path, item).

2.9. iTree iterations 61

itertree Documentation, Release 1.0.5

The index path is same as in the items .idx_path property which contains the absolute indexes to the root-parent.
But in this iterator we deliver the relative idx_path related to the element the iteration is started and not the path
to the root-parent.

The iterator does exactly the same as the following code based on the main iterator and the extraction of the
idx_paths:

>>> # Let itree be the instanced iTree in which we like to iterate over all_,
—nested items (in-depth-iteration)

>>> s=len(itree.idx_path) # required to create relative paths

>>> idx_paths_generator=((i.idx_path[s:],1i) for i in iter(itree.all))

But this specific iterator is much quicker because the indexes are counted up internally during the iteration which
is more efficent as the calculation of the idx_path for each item in this solution.

The solution to deliver the pairs is chosen, because the user can choose by unpacking what’s required for his
needs and he still can filter based on item properties.

E.g.: Store the ind_paths in a list:

>>> my_idx_path_list=[idx_path for idx_path,_ in itree.all.idx_paths()]

Store the filtered idx_paths in a list (because of the delivered items a filtering is possible):

>>> my_idx_path_list=[idx_path for idx_path,_ in filter (lambda i: i[l].tag=='mytag
—', itree.all.idx_paths())]

Convert the content of the iTree in a dict by using the idx_paths as keys:

’>>> my_dict={idx_path:item for idx_path,item in itree.all.idx_paths()}

The user may store values only in the dict too:

’>>> my_dict={idx_path:item.value for idx_path,item in itree.all.idx_paths/()}

Parameters

* filter method(Union[Callable, None])-filter method that checks for matching
items and delivers True/False. The filter_method targets always the iTree-child-object and
checks a characteristic of this object.

If None is given no filtering will be performed.
e up_to_low (bool) -
— True (default) - we iterate in-depth from up to the lower inner structure of the iTree-object
— False - we iterate in-depth from lower to upper structure of the i7ree-object
Return type Generator

Returns iterator over all iTree"-items and yields for each item the pair (relative idx_path, item)

itertree.iTree.deep.tag_idx paths()
coded in helper-class:

itertree.itree_indepth._iTreeIndepthTree.tag_idx paths()
Call via: iTree().deep.tag_idx_paths()

In-depth generator (iterator) which iterates over all nested items of the iTree-object in top -> down direction.
The iterator delivers per item the pair (relative idx_path, item).

62 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

The index path is same as in the items .key_path property which contains the absolute indexes to the root-parent.
But in this iterator we deliver the relative idx_path related to the element the iteration is started and not the path
to the root-parent.

The iterator does exactly the same as the following code based on the main iterator and the extraction of the
key_paths:

>>> # Let itree be the instanced iTree in which we like to iterate over all_,
—nested items (in-depth-iteration)

>>> s=len(itree.tag_idx_path) # required to create relative paths

>>> key_paths_generator=((i.tag_idx_path[s:],1) for i in iter(itree.all))

But this specific iterator is much quicker because the family-indexes are counted up internally during the itera-
tion which is more efficent as the calculation of the key_path for each item in this solution.

The solution to deliver the pairs is chosen, because the user can choose by unpacking what’s required for his
needs and he still can filter based on item properties (see similar examples in method idx_paths()).

Parameters

* filter _method(Union[Callable, None])-filter method that checks for matching
items and delivers True/False. The filter_method targets always the iTree-child-object and
checks a characteristic of this object.

If None is given no filtering will be performed.
* up_to_low (bool)—
— True (default) - we iterate in-depth from up to the lower inner structure of the iTree-object
— False - we iterate in-depth from lower to upper structure of the i7ree-object
Return type Generator
Returns iterator over all iTree"-items and yields for each item the pair (relative idx_path, item)
itertree.iTree.deep.iter family items ()
coded in helper-class:

itertree.itree_indepth._iTreeIndepthTree.iter_family items ()
Call via: iTree().deep.iter_family_items()

This is a special iterator that iterates over the families in iTree. It iters over the items of each family the ordered
by the first or the last items of the families.

Note: As an exception this in-depth iteration-method does not support level-filtering because in an iteration
based on tag-family items we do not see any sense in hierarchical filtering. Only external filtering of the resulting
elements makes sense.

Parameters order_last (bool)-—
* False (default) - The tag-order is based on the order of the first items in the family
* True - The tag-order is based on the order of the last items in the family

Return type Generator

Returns iterator over all families delivers tuples of (family-tag, family-item-list)

Related to tag_family sorted iterations we have in-depth only the iter_family_items() mathod available.

2.9. iTree iterations 63

itertree Documentation, Release 1.0.5

In the following example we create based on the in-depth generators lists and dicts:

>>> # deep iterators:

>>> list (root.deep) # deep counterpart of levell __iter. () iterator

[iTree ('one', value=1, subtree=[iTree('subone', value=1.1), iTree('subtwo', value=1.
—~2)1), iTree('subone', value=1.1), 1iTree('subtwo', value=1.2), iTree('two',6 value=2),
— 1Tree('three', value=3)]

>>> list (root.deep.iter (up_to_low=False)) # changed iteration order bottom—-> up
[iTree ('subone', value=1.1), iTree('subtwo', value=1.2), iTree('one', value=1l,
—subtree=[iTree ('subone', value=1.1), iTree('subtwo', wvalue=1.2)]), iTree('two',
—value=2), iTree('three', value=3)]

>>> list (root.deep.tag_idx_paths()) # deep counterpart of levell items () iterator
[((('one', 0),), iTree('one', value=1, subtree=[iTree('subone', value=1.1), iTree(
—'subtwo', value=1.2)1)), ((('one', 0), ('subone', 0)), iTree('subone', value=1.1)),
—~((('one', 0), ('subtwo', 0)), iTree('subtwo', wvalue=1.2)), ((('two', 0),), iTree(
—'two', value=2)), ((('three', 0),), iTree('three', value=3))]

>>> [(k,1.value) for k,1 in root.deep.tag_idx_paths ()] # deep counterpart of levell
—items (values_only=True) iterator

[((('one', 0),), 1), ((('one', 0), ('subone', 0)), 1.1), ((('one', 0), ('subtwo', 0)),
— 1.2), ((('two', 0),), 2), ((('"three', 0),), 3)]

>>> [k for k,_ in root.deep.tag_idx_paths()] # deep counterpart levell to keys()_
—iterator

[(('one', 0),), (('one', 0), ('subone', 0)), (('one', 0), ('subtwo', 0)), (('two', 0),
—), (('three', 0),)]

>>> [k for k,_ in root.deep.idx_paths()] # no level 1 counterpart (lists are,

—automatically indexed 0->n)
[(0,), (0, 0), (O, 1), (1,), (2,)]

2.10 iTree Filter Queries

A lot of the in-depth methods contain the parameter filter_method that can be used for hierarchical inside filtering of
iTree-items. For non-hierarchical filtering the user can use the build-in filter()-method. In case an outside filtering is
not possible (filter() cannot be used) the methods have an additional parameter hierarchical to switch in between the
two ways of filtering.

As filter_method the user can give a callable object that analysis the given item and calculates if the item matches to
the specific criteria and deliver a True/False (match/no match) for the item.

The iTree-class contains no more the old find() and “find_all() methods because all searches can be realized easier and
more clear via the filter_method-parameter.

Also we do not have any more a special “iTFilter -class, we decided that normal filtering via filtering methods is more
practicable. As a help for the user we still provide some filter classes/methods under itertree.itree_filters that might
help related to the filtering of iTree specifics.

>>> root = iTree('root', subtree=[iTree('one', 1, subtree=[iTree('subone', 1.1),
—~iTree('subtwo', 1.2)]1), iTree('two', 2), iTree('three', 3)1)

>>> filterl = lambda i: 'one' not in i.tag

>>> list (root.deep.tag_idx_paths(filterl))

[((("two', 0),), iTree('two', value=2)), ((('three', 0),), iTree('three', value=3))]
>>> # the hierarchical filter did not consider the item iTree('subtwo',1.2) because_,
—parent is filtered out

>>> list(filter(lambda i: 'one' not in i[l].tag, root.deep.tag_idx_paths())) # for,

—non-hierachical filtering use build-in

[((('one', 0), ('subtwo', 0)), iTree('subtwo', value=1.2)),
—"', value=2)), ((('three', 0),), iTree('three', value=3))]

[

((('two', 0),), iTree('two

(continues on next page)

64 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

(continued from previous page)

>>> # now the sub-items are considered even that parent did not match

A very special filtering can be realized in the get()-method by putting filters in the related levels of a target_path (level
filter).

E.g.:

root.get (Filters.is_item_tag('mytag'),Filters.is_item_tag('mytag2'))

will filter in first level for all items with the tag ‘mytag’ and in next level for all items with the tag ‘mytag2’.

The filter is used only at the specific level (in side one level we can just filter) but in the next level only the findings
of first level will be considered. Therefore the level filtering is a hierarchical filtering which means only the matching
items of the previous level are considered in the next level..

>>> # based on the root object we had in last example

>>> filter_a = lambda i: 'one' in i.tag # This will filter for the first two elements
>>> filter b = lambda i: i.value == 1.2 # First element doesn't have this level (no,
—match)

>>> root.get (»[filter_a, filter_Db]) # level filtering level=0~filter_a; level=1~
—~filter b
[iTree ('subtwo', value=1.2)]

The filtering in iTree is very effective and quick. As an example one might execute the example script
itree_usage_examplel.py or calendar_example.py. It’s recommended that the user uses iterator related functions to
reach the expected results (e.g. see itertools package).

2.11 iTree full overview over the in-depth functionalities

We already talked about some of the features in the in previous chapters (access and iterators) but now we like to give
a full overview about in-depth related functionalities.

All related methods are available in a specific iTree-object via the subclass itree.deep.

2.12 iTree formatted output and storage

The iTree-object can be printed out via classical repr() or str() method, the second method delivers a shorten represen-
tation of the subtree.

itertree.iTree.__repr__ ()
Create representation string from which the object can be theoretically be reconstructed via eval() (might not
work in case of value-objects that do not have a working __repr() method)

Return type str
Returns representation string

itertree.iTree.__str ()
String repr of the item stripping the subtree to the first and last element only and giving “..” inbetween

For full representation-string use repr().
Returns shorten representation string

A formatted multi-line tree output is available too. If the parameter enumerate is set the items in the printed tree are
also enumerated by the absolute index.

2.11. iTree full overview over the in-depth functionalities 65

itertree Documentation, Release 1.0.5

itertree.iTree.renders ()
render the iTree into a string

Parameters

* filter method(Union[Callable, None])-filter method that checks for matching
items and delivers True/False. The filter_method targets always the iTree-child-object and
checks a characteristic of this object for matches (see filter_method)

If None is given filtering is inactive.
The method uses the given filter always as an hierachical filter.
* enumerate (bool) —
— True - Add an enumeration before the items
— False (default) - Output without enumeration
* renderer (class)— Give another renderer class for different formatting
Return type str
Returns Tree representation as string

itertree.iTree.render ()
Print the rendered string of the iTree-object to the console (stdout).

Parameters

e filter method(Union[Callable, None])—filter method that checks for matching
items and delivers True/False. The filter_method targets always the iTree-child-object and
checks a characteristic of this object for matches. If None is given filtering is inactive.

¢ enumerate — add an enumeration before the rendered items

* renderer — Render to be used (The given render is stored and will be used until another
renderer is given).

Returns
(The renderer in Version 1.0.0 was improved and uses now ascii-only characters and delivers a smaller footprint).

For full serialization of the iTree-objects it’s recommended to use the internal dumps() method. If the internal methods
are used (file storage is possible too) the result is represented and stored as a JSON artifact.

itertree.iTree.dumps ()
serializes the iTree object to JSON (default serializer)

Parameters
* calc_hash - Tell if the hash should be calculated and stored in the header of string
* itree_serializer - optional user defined serializer for iTree objects

Returns serialized string (JSON in case of default serializer)

itertree.iTree.loads ()
create an iTree object by loading from a string

If not overloaded or reinitialized the iTree Standard Serializer will be used. In this case we expect a matching
JSON representation.

Parameters

* data_str — source string that contains the iTree information

66 Chapter 2. Tutorial

itertree Documentation, Release 1.0.5

* check_hash — True the hash of the file will be checked and the loading will be stopped if
it doesn’t match False - do not check the iTree hash

* load_links - True - linked iTree objects will be loaded
* itree_serializer — optional user defined serializer for iTree objects
Returns iTree object loaded from file

itertree.iTree.dump ()
serializes the iTree object to JSON (default serializer) and store it in a file

Parameters
* target_path —target path of the file where the iTree should be stored in
* pack — True - data will be packed via gzip before storage
¢ calc_hash — True - create the hash information of iTree and store it in the header
* overwrite — True - overwrite an existing file
* itree_serializer — optional user defined serializer for iTree obbjects
Returns True if file is stored successful

itertree.iTree.load ()
create an iTree object by loading from a file

If not overloaded or reinitialized the iTree Standard Serializer will be used. In this case we expect a matching
JSON representation.

Parameters
» file_ path —file path to the file that contains the iTree information

* check_hash - True the hash of the file will be checked and the loading will be stopped if
it doesn’t match False - do not check the iTree hash

* load_links — True - linked iTree objects will be loaded
* itree_serializer — optional user defined serializer for iTree objects
Returns iTree object loaded from file
In the methods the serializer can be set and might be replaced by the users own serializing format.

The serializer for Version 1.0.0 is modified and the output format is not compatible with the old format version 1.1.1.
New format can be created quicker and it has no more issues with recursion depth exceptions. The conversion of old
files can be made via the helper script:

>>> from itertree.itree_serializer.itree_ json_converter import Converter_1_1_1_ to_2_0_
<~>0

>>> new_itree=Converter_1_1_ 1 to_2_0_0(old_source_file_path)

The new storage format was required because in Version 1.0.0 we now have only one iTree class that uses the flags
parameter to be switched to read-only where we used a special class in the old implementation.

But beside this we wanted to have a better performance related to the serializing of the objects. We think that the
readability is improved too. Even that this was not the main target. The new format is also 100% JSON compatible
and can be read in by any JSON parser.

The output looks like this:

2.12. iTree formatted output and storage 67

itertree Documentation, Release 1.0.5

"TYPE": "itertree.iTree",
"VERSION": "2.0.0"
"HASH": "e7891£95dd2f2c85d4383a8772a317e11363¢c495dc65a278c821836846d06471",

b
[
[0,0,["root",0]1, (0,811,
(1,0, "0", 01,100,811,
[2,0,[("0_0",01, 10,811,
[3,0,[("0_1",01, (0,811,
[4,0,[("0_2",01,10,811,
[(5,0,("0_3",01,10,817,
1]

After the well readable header the user can see that the tree is stored in a flat list structure (which avoids RecursionError
exceptions in the JSON parsers).

The formatting of the output is created in a way that each iTree item has its own row and the indentation-level gives
the hint about the level in the tree. Each item is coded in JSON in the following way:

[level family-idx, [tag-value,type-code], [value-value,type-code]]

In case the item has additional parameters they are coded like the tag and the value too. The family-index is only given
for better readability of the files, it’s not used during the reconstruction of the object.

We have also a dot generator available which may help to create a graphical representation of the tree but this is not
deeply tested there might be limits and we cannot ensure that the shown order is always correct.

Related to serialization we like to remark that i7ree-objects can be pickled (pickle(my_tree)).

2.13 iTree linked sub-trees

The iTree objects can be merged to one main tree from different source files by using the link parameter. The result is
a merged iTree that contains all the linked subtrees. Beside the linking from different files links inside a iTree structure
(internal links) can be defined too.

The value of the link parameter of the iTree-class must be an iTLink object which defines the “file_path and the tar-
get_path. The parameters are dependent. For links inside the same iTree the file_path must be set to None. For links
targeting the root of a file the target_path parameter must be set to None. The target_path must target a unique item
in the source-tree!

Additionally the user can manipulate the linked items by making them local (covering) or by appending local items.
The functionalities given here are limited to operations that do not imply a reordering of the items in the tree. The
reason for this is th